Lattice-Boltzmann Models of Ion Thruster Cathode 3D MHD Flows

Dr. Jacques C. Richard

richard@aero.tamu.edu

http://aerounix.tamu.edu/~richard/JCR04cv.htm

Texas A & M University College Station, TX 77845, USA

Ion thrusters (see Gallimore, 2004)

Ion thrusters are the most efficient EP devices at converting input power to thrust and are used both as primary propulsion and for station-keeping on commercial and scientific spacecraft.

Key issues include grid erosion and thrust density limitations from space-charge effects.

Modern Ion Thrusters

Solar Electric Propulsion — NASA's Evolutionary Xenon Thruster (NEXT) [5-10 yr. deployment time] Nuclear Electric Propulsion — NASA's Nuclear Space Initiative [10-15 yr. deployment time]

Typical Ion Engine Parameters

 Near DCA & grid, typical ion thruster & plasma parameters are:

 $n_{Xe+} \sim 10^{13} - 10^{10} \,\mathrm{cm}^{-3}$, $n_e \sim 10^{13} - 10^{10} \,\mathrm{cm}^{-3} >> n_{Xe} >> n_{Xe++}$...

- V₊ ~ 1075 V at screen grid
- V₋ ~ -150 V at accelerator grid
- Grid separation ~ 1 mm
- Screen grid opening diameter ~ 2 mm
- Accelerator grid opening diameter ~ 1 mm
- DCA V_{dc} = 25V difference from anode
- B = 100G

Assumptions of Applicability of LB

- Note local *Kn*:
 Crawford (2002)
- Kn ~ O(0.1) around optics & DCA
- Maxwellian radial f(v)

Ion veloc. distrib. Laser-induced Fluorescence Velocimetry of Xe II in the 30-cm NSTAR-type Ion Engine Plume, Smith and Gallimore (AIAA-2004-3963)

MHD Equations

- MHD eqs. comprise conservation of

 - mass, momentum, magnetic flux $\frac{\partial}{\partial t}\begin{bmatrix} \rho\\ \rho\mathbf{v}\\ \mathbf{B}\\ E \end{bmatrix} + \nabla \cdot \begin{bmatrix} \rho\mathbf{v} \\ \mathbf{v}\mathbf{v} + p\mathbf{I} \frac{1}{\mu} \begin{pmatrix} \mathbf{B}\mathbf{B} \frac{1}{2}B^{2}\mathbf{I} \end{pmatrix} \\ \mathbf{v}\mathbf{B} \mathbf{B}\mathbf{v} \\ (E+p)\mathbf{v} \frac{1}{\mu} \begin{pmatrix} \mathbf{B}\mathbf{B} \frac{1}{2}B^{2}\mathbf{I} \end{pmatrix} \cdot \mathbf{v} \end{bmatrix} = \nabla \cdot \begin{bmatrix} 0\\ \tau_{vis}\\ \mathbf{E}_{resist}\\ \mathbf{q} \end{bmatrix}$

 - where

$$-\nabla \cdot \mathbf{E}_{resist} = \nabla \times \left(\frac{1}{\sigma}\mathbf{j} + \frac{1}{en_e}\mathbf{j} \times \mathbf{B}\right) = \left[\eta_0 \vec{j}\right] - \left[\vec{\eta} \cdot \vec{j}\right] + \left[\vec{\eta} \cdot \vec{j}\right]^T$$

• Department of Aerospace Engineering• © Dr. Jacques C. Richard

Sankaran (2001)

LBM Basics

• The molecular velocity distribution function $f = f(x_i, c_i, t) = f(\mathbf{x}, \mathbf{c}, t)$ has a <u>rate of change</u>, w.r.t. position & time,

$$\frac{\partial}{\partial t} [nf(c_i)] + c_j \frac{\partial}{\partial x_j} [nf(c_i)] = \left\{ \frac{\partial}{\partial t} [nf(c_i)] \right\}_{collision}$$
$$\left\{ \frac{\partial}{\partial t} [nf(c_i)] \right\}_{collision} = \int_{-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{\pi/2} n^2 d^2 [f(c'_i)f(z'_i) - f(c_i)f(z_i)] g \sin\psi \cos\psi d\psi d\varepsilon dV_x$$

Macroscopic variables of interest

$$\rho = \int_{-\infty}^{\infty} mfdV_c \qquad \rho \mathbf{u} = \int_{-\infty}^{\infty} m\mathbf{c}fdV_c \qquad e_{tr} = \int_{-\infty}^{\infty} \frac{1}{2} m(\mathbf{c} - \overline{\mathbf{c}})^2 fdV_c$$

The "1st Order" Boltzmann Equation

- So Boltzmann equation becomes, to 1st order: $\frac{\partial f}{\partial t} + \mathbf{c} \cdot \nabla f = -\frac{1}{\lambda} \left(f - f^{(eq)} \right) = \frac{df}{dt}$
- On the characteristic line $\mathbf{c} = d\mathbf{x}/dt$, where $\lambda = 1 / v_r$
- Integrating over a small time step δ_t , assuming $f^{(eq)}$ is smooth enough locally, and expanding in a Taylor series while neglecting terms of $O(\delta_t^2)$ and also defining $\tau = \lambda/\delta_t$:

$$f(\mathbf{x} + \mathbf{c}\delta_t, \mathbf{c}, t + \delta_t) - f(\mathbf{x}, \mathbf{c}, t) = -\frac{1}{\tau} \Big[f(\mathbf{x}, \mathbf{c}, t) - f^{(eq)}(\mathbf{x}, \mathbf{c}, t) \Big]$$

2D Square Lattice-Boltzmann Model 9-bit

- Cartesian coord $I_{m} = \frac{m}{\pi} \sum_{i,j=1}^{3} \omega_{i} \omega_{j} \psi(c_{i,j}) \begin{cases} 1 + \frac{c_{i,j} \cdot \mathbf{u}}{kT} + \frac{(c_{i,j} \cdot \mathbf{u})^{2}}{2(kT)^{2}} - \frac{\mathbf{u}^{2}}{2kT} \end{cases} \text{ of } \psi_{mn}(\mathbf{c}) = c_{x}^{m} c_{y}^{n}$ Select possible molecular velocities on 2D square lattice to
- Select possible molecular velocities on 2D square lattice to go in as many directions of such square
- The chosen velocities have a certain symmetry to account for molecules moving in any and all directions independent of directions (isotropy)
 6 2 5
- For square this means sides & corners
- This means 9 possible velocities
- To go w/at least 9 terms in $\psi_{mn}(\mathbf{c})$

Lattice Boltzmann Equation

• Equilibrium distribution function for f_{α}

$$f_{\alpha}^{(eq)} = \rho w_{\alpha} \left[1 + \frac{3}{c^2} \boldsymbol{e}_{\alpha} \cdot \boldsymbol{u} + \frac{9}{2c^4} (\boldsymbol{e}_{\alpha} \cdot \boldsymbol{u})^2 - \frac{3}{2c^2} \boldsymbol{u} \cdot \boldsymbol{u}\right]$$

Qian YH, d'Humieres D, Lallemand P. Lattice BGK Models for Navier Stokes Equation. Europhys Lett 1992;17:479-484.

LBM MHD EP Model

The model assumes coupling of the velocity distribution function w/the Lorentz force j×B in acceleration a

$$\frac{\partial f}{\partial t} + \mathbf{c} \bullet \nabla_{\mathbf{r}} f + \mathbf{a} \bullet \nabla_{\mathbf{c}} f = Q(f, f)$$

Then

$$f(\mathbf{x} + \mathbf{c}\delta_t, \mathbf{c}, t + \delta_t) - f(\mathbf{x}, \mathbf{c}, t) = -\frac{1}{\tau} \Big[f(\mathbf{x}, \mathbf{c}, t) - f^{(eq)}(\mathbf{x}, \mathbf{c}, t) \Big] - \frac{\delta_t}{2} \mathbf{a} \bullet \nabla_{\mathbf{c}} f$$

LBM MHD EP Model

- Vector distrib. $\mathbf{g}(\mathbf{x}, \mathbf{w}, t)$ gives $\mathbf{B} = \int \mathbf{g} \, d\mathbf{w}$
- Macroscopic MHD eqs. also recovered
- Evolution of g(x, w, t) obeys a kinetic eq

$$\frac{\partial \mathbf{g}}{\partial t} + \mathbf{w} \cdot \nabla \mathbf{g} = -\frac{1}{\lambda_m} \left(\mathbf{g} - \mathbf{g}^{(eq)} \right) = \frac{d\mathbf{g}}{dt}$$
$$\mathbf{g}(\mathbf{x} + \mathbf{w}\delta_t, \mathbf{w}, t + \delta_t) - \mathbf{g}(\mathbf{x}, \mathbf{w}, t) = -\frac{1}{\tau_m} \left[\mathbf{g}(\mathbf{x}, \mathbf{w}, t) - \mathbf{g}^{(eq)}(\mathbf{x}, \mathbf{w}, t) \right]$$
$$\rho = \sum_{\alpha=1}^N f_\alpha \qquad \rho \mathbf{u} = \sum_{\alpha=1}^N \mathbf{e}_\alpha f_\alpha + (\mathbf{j} \times \mathbf{B}) \frac{\delta_t}{2} \qquad \mathbf{B} = \sum_{\beta=1}^M \mathbf{g}_\beta$$

Dellar, P., "Lattice Kinetic Schemes for MHD", Journal of Computational Physics **179**, 95–126 (2002). G. Breyiannis and D. Valougeorgis, "Lattice kinetic simulations in three-dimensional magnetohydrodynamics", PHYS. REV. E **69**, 065702(R) (2004)

LBM MHD Parameters

- The magnetic resistivity is $\eta = \tau_m \theta_m \delta_t$
- where $\theta_m = 1/4$
- Constraints are

$$\Sigma_{\beta} W_{\beta} = 1, \Sigma_{\beta} W_{\beta} \zeta_{j\beta} \zeta_{\beta j} = 0$$

- For lattice to retain symmetry up to 3rd order:
- $\Sigma_{\beta} W_{\beta} \zeta_{\beta\alpha} = 0, \Sigma_{\beta} W_{\beta} \zeta_{\beta\alpha} \zeta_{\betaj} \zeta_{\beta\gamma} = 0$

$$g_{\beta j}^{(eq)} = W_{\beta} \left[B_j + \theta_m^{-1} \zeta_{\beta i} \left(u_i B_j - B_i u_j \right) \right]$$

$$W_{\beta} = \begin{cases} 1/4, & \beta = 0\\ 1/2, & \beta = 1, 2, \dots 6 \end{cases}$$

Electron/Ion number density mappings

- NASA Solar Electric Propulsion Technology Applications Readiness (NSTAR) 30-cm ion thruster
- Thruster operating conditions: $V_{dc} = 25.10$ V and $J_{dc} = 8.24$ A
- LBMHD #density nozzle expansion characteristics partly captured
- But not range of #s

Daniel A. Herman† and Alec D. Gallimore, "Discharge Chamber Plasma Structure of a 30-cm NSTAR-type Ion Engine" *Plasmadynamics and Electric Propulsion Laboratory, U. Michigan, Ann Arbor, MI 48109 USA,* AIAA-2004-3794

Velocity map

- Xe II velocity map for 12 A, 27 V operation.
- Note regions of back-flowing ions along the cathode face (x=0) & region of small velocities along centerline between 0.3 & 0.6 cm downstream.
- Some individual species effects on plasma stream at centerline & edges
- LBMHD captures major plasma flow, not back-flow details

G. J. Williams, Jr., T. B. Smith, K. H. Glick, Y. Hidaka, and A. D. Gallimore, "FMT-2 Discharge Cathode Erosion Rate Measurements via Laser-Induced Fluorescence", AIAA-00-3663

Velocity map

- Xe II velocity map for 12 A, 27 V operation.
- Note regions of back-flowing ions along the cathode face (x=0) & region of small velocities along centerline between 0.3 & 0.6 cm downstream.
- LBMHD w/a little more plasma turbulence captures more of the flow trends and some back-flow

G. J. Williams, Jr., T. B. Smith, K. H. Glick, Y. Hidaka, and A. D. Gallimore, "FMT-2 Discharge Cathode Erosion Rate Measurements via Laser-Induced Fluorescence", AIAA-00-3663

Conclusions & Future Work

- LBMHD does OK modeling EP bulk fluid flow
- Other species back-flow too buried in MHD plasma model
- Electrostatic single species model does better as in <u>LBM-Poisson model of optics</u>*
- Next is to try
 - other species, perhaps quasi-3D w/Maxwell's eqs.
 - variations in collision operator, e.g.,pseudo-random collision frequency as in DSMC
 - Other variations of BE form

* Richard, J. C. and Shah, P. Application of LBM to Xe⁺ Flow about Ion Thruster Optics", Int'I. Conf. for Mesoscopic Methods in Engineering and Science (ICMMES), Technical University of Braunschweig, Germany, July 26 - 29, 2004 <u>www.icmmes.org</u>

