
•  Department of Aerospace Engineering•
© Dr. Jacques C. Richard

Lattice-Boltzmann Models of
Ion Thruster Cathode 3D MHD

Flows

Dr. Jacques C. Richard
richard@aero.tamu.edu

http://aerounix.tamu.edu/~richard/JCR04cv.htm
Texas A & M University

College Station, TX 77845, USA



•  Department of Aerospace Engineering•
© Dr. Jacques C. Richard

Ion thrusters are the most efficient EP devices at converting input power to thrust and are
used both as primary propulsion and for station-keeping on commercial and scientific

spacecraft.
Key issues include grid erosion and thrust density limitations from space-charge effects.
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Solar Electric Propulsion — NASA’s Evolutionary
Xenon Thruster  (NEXT) [5-10 yr. deployment time]

DAWN

Nuclear Electric Propulsion — NASA’s Nuclear
Space Initiative [10-15 yr. deployment time]
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Typical Ion Engine Parameters
 Near DCA &  grid, typical ion thruster & plasma

parameters are:
nXe+~ 1013-1010 cm-3 , ne ~ 1013-1010 cm-3 >> nXe >> nXe++ …

 V+ ~ 1075 V at screen grid
 V- ~ -150 V at accelerator grid
 Grid separation ~ 1 mm
 Screen grid opening diameter ~ 2 mm
 Accelerator grid opening diameter ~ 1 mm
 DCA Vdc = 25V difference from anode
 B = 100G
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Assumptions of Applicability of LB
 Note local Kn:
 Crawford (2002)
 Kn ~ O(0.1) around

optics & DCA
 Maxwellian radial f(v)

Kn =
!

L
=

RT

2"d 2NApL

L =
#

d# / dx

Ion veloc. distrib. Laser-induced Fluorescence Velocimetry of Xe II in the 30-cm NSTAR-type Ion Engine Plume, Smith and
Gallimore (AIAA-2004-3963)
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MHD Equations
 MHD eqs. comprise conservation of

• mass,
• momentum,
• magnetic flux
• energy
• where

Sankaran (2001)
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LBM Basics
 The molecular velocity distribution function

f = f(xi, ci, t) = f(x, c, t) has a rate of change,
w.r.t. position & time,

 Macroscopic variables of interest  
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The “1st Order” Boltzmann Equation
 So Boltzmann equation becomes, to 1st order:

 On the characteristic line c = dx/dt, where λ = 1 / νr

 Integrating over a small time step δt, assuming f(eq) is
smooth enough locally, and expanding in a Taylor series
while neglecting terms of O(δt

2) and also defining τ = λ/δt:

! f

!t
+ c "#f = $

1

%
f $ f

(eq)( ) =
df

dt
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#
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 Cartesian coord. moment integral of

 Select possible molecular velocities on 2D square lattice to
go in as many directions of such square

 The chosen velocities have a certain symmetry to account
for molecules moving in any and all directions independent
of directions (isotropy)

 For square this means sides & corners
 This means 9 possible velocities
 To go w/at least 9 terms in ψmn(c)
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• Equilibrium distribution function for fα

 

 Δ 9-velocity model(2D):

 Δ 19-velocity model (3D):
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Lattice Boltzmann Equation

Qian YH, d'Humieres D, Lallemand P. Lattice BGK Models for Navier Stokes Equation.
Europhys Lett 1992;17:479-484.
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LBM MHD EP Model

 The model assumes coupling of the
velocity distribution function w/the
Lorentz force j ×B in acceleration a

 Then
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LBM MHD EP Model
 Vector distrib. g(x, w, t) gives B = ∫  g dw
 Macroscopic MHD eqs. also recovered
 Evolution of g(x, w, t) obeys a kinetic eq

Dellar, P., “Lattice Kinetic Schemes for MHD”, Journal of Computational Physics 179, 95–126 (2002).
G. Breyiannis and D. Valougeorgis, “Lattice kinetic simulations in three-dimensional magnetohydrodynamics”, PHYS. REV.
E 69, 065702(R) (2004)
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LBM MHD Parameters
 The magnetic resistivity

is η  = τmθmδt

 where θm=1/4
 Constraints are
Σβ Wβ = 1, Σβ  Wβ ζjβ ζβj = 0
 For lattice to retain

symmetry up to 3rd order:
Σβ Wβζβα=0, Σβ Wβζβαζβjζβγ=0 W! =

1 / 4, ! = 0

1 / 2, ! = 1,2,...6
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Electron/Ion number density mappings
 NASA Solar Electric

Propulsion Technology
Applications Readiness
(NSTAR) 30-cm ion
thruster

 Thruster operating
conditions: Vdc = 25.10 V
and Jdc = 8.24 A

 LBMHD #density nozzle
expansion characteristics
partly captured

 But not range of #s
Daniel A. Herman† and Alec D. Gallimore, “Discharge Chamber Plasma Structure of a 30-cm NSTAR-type Ion Engine”
Plasmadynamics and Electric Propulsion Laboratory, U. Michigan, Ann Arbor, MI 48109 USA, AIAA-2004-3794
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Velocity map
 Xe II velocity map for 12 A, 27 V

operation.
 Note regions of back-flowing

ions along the cathode face
(x=0) & region of small
velocities along centerline
between 0.3 & 0.6 cm
downstream.

 Some individual species effects
on plasma stream at centerline
& edges

 LBMHD captures major plasma
flow, not back-flow details

G. J. Williams, Jr., T. B. Smith, K. H. Glick, Y. Hidaka, and A. D. Gallimore, “FMT-2 Discharge Cathode Erosion Rate
Measurements via Laser-Induced Fluorescence”, AIAA-00-3663
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Velocity map
 Xe II velocity map for 12 A, 27 V

operation.
 Note regions of back-flowing

ions along the cathode face
(x=0) & region of small
velocities along centerline
between 0.3 & 0.6 cm
downstream.

 LBMHD w/a little more plasma
turbulence captures more of the
flow trends and some back-flow

G. J. Williams, Jr., T. B. Smith, K. H. Glick, Y. Hidaka, and A. D. Gallimore, “FMT-2 Discharge Cathode Erosion Rate
Measurements via Laser-Induced Fluorescence”, AIAA-00-3663
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Conclusions & Future Work
 LBMHD does OK modeling EP bulk fluid flow
 Other species back-flow too buried in MHD

plasma model
 Electrostatic single species model does better

as in LBM-Poisson model of optics *
 Next is to try

• other species, perhaps quasi-3D w/Maxwell’s eqs.
• variations in collision operator, e.g.,pseudo-random

collision frequency as in DSMC
• Other variations of BE form

* Richard, J. C. and Shah, P. Application of LBM to Xe+ Flow about Ion Thruster Optics”, Int’l. Conf.  for Mesoscopic Methods  in
Engineering and Science (ICMMES), Technical University  of Braunschweig, Germany, July 26 - 29, 2004  www.icmmes.org


