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lon thrusters (see Gallimore, 2004)
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lon thrusters are the most efficient EP devices at converting input power to thrust and are
used both as primary propulsion and for station-keeping on commercial and scientific
spacecraft.
Key issues include grid erosion and thrust density limitations from space-charge effects.
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Modern lon Thrusters

Solar Electric Propulsion — NASA'’s Evolutionary Nuclear Electric Propulsion — NASA’s Nuclear
Xenon Thruster (NEXT) [5-10 yr. deployment time] Space Initiative [10-15 yr. deployment time]
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Typical lon Engine Parameters

Near DCA & grid, typical ion thruster & plasma

parameters are:
Nyes~ 1013-1010cm3 | n, ~ 1013-10"9cm3 >> n,, >> ny,, ...

V.~ 1075V at screen grid

V_~-150 V at accelerator grid

Grid separation ~ 1 mm

Screen grid opening diameter ~ 2 mm
Accelerator grid opening diameter ~ 1 mm
DCA Vv, =25V difference from anode

B =100G
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Assumptions of Applicability of LB
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= Note local Kn:

Crawford (2002)

= Kn ~0O(0.1) around
optics & DCA
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lon veloc. distrib. Laser-induced Fluorescence Velocimetry of Xe |l in the 30-cm NSTAR-type lon Engine Plume, Smith and

Gallimore (AIAA-2004-3963)
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MHD Equations

MHD eqgs. comprise conservation of

mass, o pY -
p 1 . 0
SR o + Ve H : .
magnetic flux or| B vB - Bv E, .
E
energy - (E+p)v—l(BB—%BZI)-V - 4
! u ]
where
., 1. 3 T231.023T
e =V L L | [0 ] [+ ]
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LBM Basics

The molecular velocity distribution function
f=fx,c,t)=f(x, c, t) has a rate of change,
w.r.t. position & time,

2

Sleolve )= { [nf<c,.>]}

collision

{5[”]((6})]} TJH j n’d’| f — f(c,)f(z;)|gsinycosydydedV,

collision  — o 0 0

Macroscopic variables of interest

N R
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The “1%t Order” Boltzmann Equation

So Boltzmann equation becomes, to 15 order:

8_f : __l _ fleq) _ﬁ
o v/ = it(f / )_dt

On the characteristic line ¢ = dx/dt, where A=1/v,

Integrating over a small time step 0,, assuming f¢9/ is
smooth enough locally, and expanding in a Taylor series
while neglecting terms of O(0,?) and also defining 7= A/0;:

f(x+¢é,c,t+68)— f(x,¢1) :—%[ fx.e0)— f“Ix,e1)]
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2D Square Lattice-Boltzmann Model 9-bit

Cartes1an coord, moment 1nte;gral of Y, (e)=cc ;L

c,.eu (Cl.’JJll) ll
Za)a)t//( )1+ liT + 2(kT) ey

Select poss1ble molecular velocities on 2D square lattice to
g0 1n as many directions of such square

The chosen velocities have a certain symmetry to account
for molecules moving in any and all directions independent
of directions (1sotropy)

6 5

For square this means sides & corners o e A4
This means 9 possible velocities 3 .
To go w/at least 9 terms in ¥, (c) R
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Lattice Boltzmann Equation

« Equilibrium distribution function for f,,

9 3

02

3
€D = pw [1+ e, ut+— (e, -u)z——zu -u]
c 2c

A 9-velocity model(2D):

4/9, a=0
w, =4 1/9, o =135,7
1/36, a=2,4,6,8
A 19-velocity model (3D):
1/3, a=0
wo =1 1/18, 0=12,.6
1/36, a=723,..18.

Q19D3 lattice

Qian YH, d'Humieres D, Lallemand P. Lattice BGK Models for Navier Stokes Equation.
Europhys Lett 1992;17:479-484.
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LBM MHD EP Moqael

The model assumes coupling of the
velocity distribution function w/the

Lorentz force jxB in acceleration a
L teaV, frasy, =000

Then
f(x+c5t,c,t+5t)—f(x,c,t):—%[f(x,c,t)—f(@(x,c,t)]—%acvcf
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LBM MHD EP Moqael

Vector distrib. g(x, w, ) gives B =/ g dw
Macroscopic MHD eqgs. also recovered
Evolution of g(x, w, ) obeys a kinetic eq

g 1 dg
2 i w-Vo=—— _ol)\_-"5
o v Ves T leme)= g

m
1
g(X+wS,w,t+0,)—g(X,w,t)= ——[g(x,w,t) - g(eQ)(X,W,t):l
Tm

N N o .
=% meSestmmd p-Se,
o=1 o=1 p=1

Dellar, P., “Lattice Kinetic Schemes for MHD”, Journal of Computational Physics 179, 95-126 (2002).
G. Breyiannis and D. Valougeorgis, “Lattice kinetic simulations in three-dimensional magnetohydrodynamics”, PHYS. REV.
E 69, 065702(R) (2004)

Department of Aerospace Engineering




LBM MHD Parameters

The magnetic resistivity 0
s n=r1,0,0, 4
where 6,=1/4 . -
Constraints are e e e

2p Wp=1, 25 WpGiplp = 0 =

For lattice to retain - ]
symmetry up to 3" order: i’ = Wy| B +6,C, (B, ~ B, |

_ _ 1/4, B=0
25 Wp6po=0, X5 WpGp,6565,=0 W = {1/2, B=12..6
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Electron/lon number density mappings

= NASA Solar Electric
Propulsion Technology

ni[em’3]

Applications Readiness  :
(NSTAR) 30-cm ion 10

thruster

= Thruster operating
conditions: V,.=25.10 V
and J,. =824 A

= LBMHD #density nozzle
expansion characteristics
partly captured

= But not range of #s

Daniel A. Hermant and Alec D. Gallimore, “Discharge Chamber Plasma Structure of a 30 -cm NSTAR type lon Engine”
P/asmadinam/cs and Electric Propulsion Laboratory, U. Michigan, Ann Arbor, Ml 48109 USA, AIAA-2004-3794

y at centerline {mid-plane) 1cm ahead of DCA
S T
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Velocity map

Xe ll velocity map for 12 A, 27V [ 777777 e
operation. g” S o
Note regions of back-flowing §F it F LR L]
ions along the cathode face TR 3
(x=0) & region of small Py 2
velocities along centerline TE Ny )
between 0.3 & 0.6 cm DD S -
downstream. e

Some individual species effects oo ——————"~
on plasma stream at centerline
& edges

LBMHD captures major plasma

alized radial posit
B
o
({/

l@

>)

. 10k -
flow, not back-flow details ) /f’////;r/ﬁ\\\\

Mon-dimensionalized axial position

G. J. Williams, Jr., T. B. Smith, K. H. Glick, Y. Hidaka, and A. D. Gallimore, “FMT-2 Discharge Cathode Erosion Rate
Measurements via Laser-Induced Fluorescence”, AIAA-00-3663
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Velocity map

Xe Il velocity map for 12 A, 27 V 2

operation. %f |

Note regions of back-flowing S

ions along the cathode face R

(x=0) & region of small I S - |

velocities along centerline Y g

between 0.3 & 0.6 cm b . .

downstream. o Seleted velosity vectors at centerineimicplane fc i:r front of DC.

LBMHD w/a little more plasma | = = . .

turbulence captures more of the fe g

flow trends and some back-flow iy - . - - 7
| 2 Fed iR

G. J. Williams, Jr., T. B. Smith, K. H. Glick, Y. Hidaka, and A. D. Gallimore, “FMT-2 Discharge Cathode Erosion Rate
Measurements via Laser-Induced Fluorescence”, AIAA-00-3663
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Conclusions & Future Work

LBMHD does OK modeling EP bulk fluid flow

Other species back-flow too buried in MHD
plasma model

Electrostatic single species model does better
as in LBM-Poisson model of optics ~

Next is to try
other species, perhaps quasi-3D w/Maxwell's egs.

variations in collision operator, e.g.,pseudo-random
collision frequency as in DSMC

Other variations of BE form

" Richard, J. C. and Shah, P. Application of LBM to Xe* Flow about lon Thruster Optics”, Int'l. Conf. for Mesoscopic Methods in
Engineering and Science (ICMMES), Technical University of Braunschweig, Germany, July 26 - 29, 2004 www.icmmes.org
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