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Two Ideas

1. Deformation of upper layer of orbit of eye

2. Deformation of artery into brain while
simultaneously measuring velocity, radius,
blood pressure, etc.



Problem

• Modeling blood flow to brain requires dealing with
complicated interaction of blood with flexible blood
vessel wall

• Simulating transitional flows, wherein transition from
one flow type to another, as in laminar to turbulent, is
complicated enough

• But in complex geometries such as human arteries, it
is further complicated.

• Adding further that such complex geometries can
move or deform is even more challenging.



Specific Goal

• Wall vibration is a possible energy dissipation
mechanism in transitional flows adjacent to
compliant surfaces

• Investigate such combined fluid-structure
interactions with a spectral element code



Brain MRI

Blood flow
thru brain:
too complex

Analyze
flow
in/out
thru
carotid
artery



Current Models

• Fischer et al. model transition in a stenosed carotid artery:
http://www-unix.mcs.anl.gov/~fischer/car_trans.html

• Taylor; et al. design surgical support system with FEM
and MRI

• Xu used carotid artery bifurcation models reconstructed
from MR scans of 3 healthy adults.



Current Models

• Blood is a complex fluid in that different types
of blood cells make its modeling difficult.

• However, it could be modeled as an
incompressible Newtonian fluid for the limited
distance from the heart to the brain
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Analysis

• Expand Fischer et al.’s work by using a
compliant wall

• First step: validate compliant wall modeling
with simpler 2D geometry
wModel free surface with spectral element code

wModel moving wall

wModel combinations, etc.



Spectral Element Method

• Like Finite Element Method
• But with Spectral Functions
• Infinitely differentiable global functions of SEM

vs. local character of FEM functions
• Adaptive mesh
• Polynomials of high and differing degrees
• Non-conforming spectral element method as

described by Fischer; Patera; van de Vosse and
Minev; Bernadi and Maday; with Ho’s free-
surface & moving wall extensions.



SEM Discretization

• Polynomial approximation for velocity two
degrees higher than that for pressure

• Avoids spurious pressure modes.

• Like solving eqs. on a staggered grid where u
and p are solved on different grids but coupled
(e.g., via interpolation)



SEM Approach

• Temporal discretization of Navier-Stokes eqs. based on
high-order operator splitting methods
w Splitting problem into convection & diffusion

w Some combination of integration schemes for convection
operator or for time-dependent terms that may be high order

w With some degree of polynomial for SEM discretization of
diffusion terms giving high-order in space

• Coupled w/SEM spatial discretization to yield sequence
of symmetric positive definite (SPD) sub-problems to be
solved at each time step.



SEM Algorithm

• Stokes discretization based on variational form:
Find (u, p)  in X ¥ Y such that

• " (v,q) Œ X ¥ Y, I.e., as weights in X ¥ Y.

• Inner products: (l,g)=∫Ω(t) l(x) g(x) d x
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Discrete Stokes System

• Inserting SEM basis
f(xk ( r ))|Wk

  = ∑N
i=0 ∑N

j=0  fk
ij hi( r1 ) hj( r2 )

into

yields H  un - DT pn = B fn , D un = 0
where
¸ H = A/Re + B/∆t = discrete equivalent of Helmholtz operator;
¸ A = discrete Laplacian,
¸ B = mass matrix associated with the velocity mesh (diagonal);
¸ D = discrete divergence operator
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Proper Subspaces

• The proper subspaces for u, v, and p, q are:
X={v : vi Œ H1

0 (W), i=1,…,d,  v = 0 on ∂Ωv}, d=2 if 2D...
Y= L2 (W)

w L2 is the space of square integrable functions on W;
∫Ωv2dV = ∫Ωv2d3r
w H1

0 is the space of functions in L2 that vanish on the
boundary (0) and whose first derivative (1) is also in L2;
∫Ω(∂v/∂r)2dV = ∫Ω(∂v/∂r)2d 3r

• Spatial discretization proceeds by restricting u, v,
and p, q to compatible finite-dimensional velocity
and pressure subspaces: XN Ã X and YN Ã Y



Handling Pressure

• To avoid spurious pressure modes, Maday, Patera
and Rønquist, and, Bernardi and Maday suggest
different approximation spaces for velocity and
pressure:
XN = X « PN,K(W)

YN = Y « PN-2,K(W)

where
PN,K(W)={v(xk ( r ))|Wk

 ŒPN(r1) '…' PN(rd), k=1,..,K }

and PN(r) is space of all polynomials of degree≤N



Space Dimensions

• Dimension of YN is K(N-1)d since continuity is
enforced for functions in YN

• Dimension of XN is dK(N+1)d because
w  functions in XN must be continuous across sub-

domain interfaces

w Dirichlet bc’s on ∂Ωv



Function Spaces

• Velocity Space: Basis chosen for PN(r) is set of
Lagrangian interpolants on Gauss-Lobatto-
Legendre (GL) quadrature pts. in ref. domain: xi Œ
[-1,1], i=0,…,N

• Pressure Space: Basis chosen for PN-2(r) is set of
Lagrangian interpolants on Gauss-Legendre (G)
quadrature pts. in ref. domain: hi Œ ]-1,1[,
i=1,…,N-1

• Basis for velocity is continuous across sub-domain
interfaces but basis for pressure is not



SEM Algorithm Quadrature

• Subscripts (.,.)GL and (.,.)G referred to Gauss-
Lobatto-Legendre (GL) and Gauss-Legendre (G)
quadrature which are:

• ∫1
-1f(x)dx= w1 f (-1)+wN f (1)+∑N

iwi f (xi)



Gauss-Lobatto-Legendre (GL)
Quadrature

• ∫1
-1f(x)dx=w1 f (-1)+wN f (1)+∑n

iwi f (xi) where

• Ln are the Legendre polynomials, Gauss-Lobatto
points are zeroes of L’N or (1-x2) L’N & at
endpoints (-1,1)
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Gauss-Lobatto-Legendre (GL)
Quadrature

• w/error

• for x Œ (-1,1)

• The weights may also be written as
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Gauss-Legendre (G) Quadrature

• Same as Gauss-Legendre-Lobatto but w/o
endpoints (not used for prescribed function
values at boundaries) and the weights are

• Where LN are the Legendre polynomials, the
Gauss points (interior points) are zeroes of
LN+1

† 
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Interpolation Polynomials

• Basis functions are Legendre-Gauss-Lobatto-
Lagrange interpolation polynomials:
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Free Surface Model

• At moving boundary (∂Ωs (t), also traction
boundary) btwn fluid & other continuum is
Neumann bc, tij nj = Ti = t ⋅ ûn = T , the traction.

• Surface tension (s) modeled at this interface by
adding ∫∂Ωs(t) s k vi ni dA to RHS of Stokes problem
ß ∂Ωs (t) is for traction boundary,
® k = curvature



Free Surface Model

• In 2D, k = si,z ,
wsi is a unit vector tangent to free surface segment from

pt. a to b,
wz is a curvilinear coord. along segment

• So that ∫∂Ωs(t) s k vi ni dA = ∫a
b s vi si,z dz

• Integrating by parts, noting that vi,z = vi,j sj ,
 ∫∂Ωs(t) s k vi ni dA = - ∫a

b s vi,j si sj dz + (s vi si)a
b



Moving Mesh

• Account for moving mesh by adding another
term to RHS of Stokes’ problem:
 ∫Ω(t) vi ( ui wj ),,j dV = ∫Ω(t) v — ⋅ ( u w ) dV =

(v , — ⋅ ( u w ) ) where w is the mesh velocity

• The mesh velocity provides for nodal coords.
to be updated as dxnode/dt = w



Results

• Free surface, initially sinusoidal in shape

• Then allowed to vary according to differences in
initial fluid pressure compared to that above the
free surface

• Free surface gradually began to move and be
reshaped by the pressure imbalance



Free Surface

At dimensionless t=0.8, 200th time step; fluid pushing up the middle…

K=32 elements,  N=5th order



Free Surface

At dimensionless t=1.6, 400th time step; appears to be flattened but fluid
still pushing up, vortex pair forming near free surface…



Free Surface

At dimensionless t=2.4, 600th time step; appears to be flattened but fluid
pushed to sides at top, twin vortices moved down…



Free Surface

At dimensionless t=3.2, 800th time step; not flattening but seeming to be
reversing shape like an oscillating free surface; vortex pair back up…



Free Surface

At dimensionless t=6.4, 1600th time step; not oscillating shape but free
surface breaking up; vortices broken up fi then numerical instability



Free Surface: Finer Mesh

At dimensionless t=0.8, 200th time step; Finer mesh shows the same
thing but with better resolution: K=64, N=5



Free Surface: Finer Mesh

At dimensionless t=0.8, 200th time step; But isobars show pressure
gradient oscillating w/free surface



Free Surface: Finer Mesh

At dimensionless t=24, 6000th time step; Finer mesh better details break-
up



Free Surface: Finer Mesh

At dimensionless t=24, 6000th time step; Finer mesh better details break-
up & accompanying pressure distortions



Shape-Changing Wall

• Free surface was replaced with a compliant
wall that starts with a sinusoidal shape but that
shape varied sinusoidally with time as well.

• The fluid response contained regions where the
flow-field showed fluid circling up into the
high points of the sinusoidal-shaped wall and
down from the lower points.

• There appeared vortices oscillating with the
oscillating wall



Moving wall

• Non-time-varying sinusoidal-shaped wall given a
prescribed vertical velocity downward into the fluid
region,

• The fluid moved out through an unconstrained end.

• However, fluid became entrapped under a hump of
the sinusoidal shape.

• The simulation could not continue further beyond the
point where the non-compliant sinusoidal-shaped
wall reached the bottom of the fluid region



Conclusion

• The results obtained suggests that a compliant
wall can have its shape altered by the fluid
region it bounds and the reverse

• The results also show how the wall can
determine where fluid can flow and the way
that flow occurs



Future Work

• More combinations planned

• Extend to 3D

• Apply to carotid artery

• Extend SEM potential w/parallel numerical
libraries w/solvers, pre-conditioners, etc.
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