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Two Ideas

1. Deformation of upper layer of orbit of eye

2. Deformation of artery into brain while
simultaneously measuring velocity, radius,
blood pressure, eftc.




Problem

* Modeling blood flow to brain requires dealing with
complicated interaction of blood with flexible blood
vessel wall

» Simulating transitional flows, wherein transition from
one flow type to another, as 1n laminar to turbulent, 1s
complicated enough

* But in complex geometries such as human arteries, 1t
1s further complicated.

* Adding further that such complex geometries can
move or deform 1s even more challenging.




Specific Goal

» Wall vibration 1s a possible energy dissipation
mechanism 1n transitional flows adjacent to
compliant surfaces

* Investigate such combined fluid-structure
interactions with a spectral element code



Brain MRI

Blood tlow
thru brain:
too complex

Analyze
flow
1n/out
thru
carotid
artery




Current Models

* Fischer et al. model transition in a stenosed carotid artery:
http://www-unix.mcs.anl.gov/~fischer/car trans.html

» Taylor; et al. design surgical support system with FEM
and MRI

» Xu used carotid artery bifurcation models reconstructed
from MR scans of 3 healthy adults.
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Current Models

* Blood 1s a complex fluid in that different types
of blood cells make 1ts modeling difficult.

 However, 1t could be modeled as an
incompressible Newtonian fluid for the limited
distance from the heart to the brain

Ju 1
—+u*Vu=-Vp+—V-u
ot Re

Veu=0



Analysis

» Expand Fischer ef al.’s work by using a
compliant wall

* First step: validate compliant wall modeling
with simpler 2D geometry
Model free surface with spectral element code

Model moving wall

Model combinations, etc.



Spectral Element Method

* Like Finite Element Method

» But with Spectral Functions

* Infinitely differentiable global functions of SEM
vs. local character of FEM functions

» Adaptive mesh
* Polynomials of high and differing degrees

* Non-conforming spectral element method as
described by Fischer; Patera; van de Vosse and
Minev; Bernadi and Maday; with Ho’s free-
surface & moving wall extensions.



SEM Discretization

» Polynomial approximation for velocity two
degrees higher than that for pressure

* Avoids spurious pressure modes.

» Like solving egs. on a staggered grid where u
and p are solved on different grids but coupled
(e.g., via interpolation)



SEM Approach

* Temporal discretization of Navier-Stokes eqs. based on
high-order operator splitting methods
Splitting problem into convection & diffusion

Some combination of integration schemes for convection
operator or for time-dependent terms that may be high order

With some degree of polynomial for SEM discretization of
diffusion terms giving high-order in space

. to yield sequence
of symmetric positive definite (SPD) sub-problems to be
solved at each time step.



SEM Algorithm

* Stokes discretization based on variational form:

Find (u, p) 1n X'x Y such that

1 3
R—e(Vu,VV) + 2—At(u,v) -(p,Vev)=({,v)

(Veu,q) =0
» V (v, EXx7Y,Ile., as weights in X x Y.
» Inner products: (/,2)=] o [(X) g(x) dx



Discrete Stokes System

* Inserting SEM basis
SOF(r))g" =2 Zszo sz] h(r) hj( )

Into

1 3

—(Vu,Vv)+ — W, v)-(p,Vev)=(f,v
Re( ) 2At( )= (p )=(f,v)

(Veugqg) =0
yields H w*-D"p"=Bf" , Du"=0
where

v' H = A/Re + B/At = discrete equivalent of Helmholtz operator;
v" A = discrete Laplacian,

v" B = mass matrix associated with the velocity mesh (diagonal);
v" D = discrete divergence operator



Proper Subspaces

» The proper subspaces for u, v, and p, g are:
X={v:v.€E H\(Q),i=1,...d v=00n0Q }, d=2 11 2D...
Y= L?%©)

L? is the space of square integrable functions on Q;
Jo2dV = | V2 d3r

H', is the space of functions in L? that vanish on the
boundary (,,) and whose first derivative (1) is also in L?;

Jo(6v/6r)2dV = [(Ov/or)2d 3r
» Spatial discretization proceeds by restricting u, v,

and p, g to compatible finite-dimensional velocity
and pressure subspaces: XY C Xand YYC Y



Handling Pressure

* To avoid spurious pressure modes, Maday, Patera
and Renquist, and, Bernardi and Maday suggest
different approximation spaces for velocity and

pressure:
XN=XN Py Q)
YW=Y NPy, Q)
where

P, (Q)={v(x*(1)) EP\(r) @.. 2 P\(r), k=1,..K }
and P,(7) 1s space of all polynomials of degree<N



Space Dimensions

 Dimension of YV is K(N-1)“ since continuity is
enforced for functions in YV
 Dimension of X" is dK(N+1)“ because

+ functions in X» must be continuous across sub-
domain interfaces

¢ Dirichlet be’s on 0€Q2



Function Spaces

* Velocity Space: Basis chosen for P,(7) 1s set of

Lagrangian interpolants on Gauss-Lobatto-
Legendre (GL) quadrature pts. in ref. domain: §; €

~1,1],i=0,...,N

* Pressure Space: Basis chosen for P, ,(7) 1s set of

Lagrangian interpolants on Gauss-Legendre (G)
quadrature pts. in ref. domain: 1, € |-1,1],

i=1,...,N-1

» Basis for velocity 1s continuous across sub-domain
interfaces but basis for pressure is not




SEM Algorithm Quadrature

* Subscripts (.,.);; and (.,.) referred to
(GL) and Gauss-Legendre (G)
quadrature which are:

o JUfo)dx= wi f (1w f (DTN f (x)



Gauss-Lobatto-Legendre (GL)
Quadrature

o [ fdx=w, f (-Dwy f (D" w,f (x,) where
W O 2N 2

(=X)L ()L, (x) NN =DILy (x)F

L _are the Legendre polynomials, Gauss-Lobatto
points are zeroes of L’ or (1-x%) L’y & at
endpoints (-1,1)

GL 2

" NN -1)

Win



Gauss-Lobatto-Legendre (GL)
uadrature

* w/error
NN =D 2°"'[(N -2)!T*
2N =D[2N =2'T’
» for € (-1,1)
» The weights may also be written as
GL 2 1
w, =p;,= >
NN +1)[L,(x,)]

E - o)




Gauss-Legendre (G) Quadrature

* Same as Gauss-Legendre-Lobatto but w/o
endpoints (not used for prescribed function
values at boundaries) and the weights are

G 2
W =0, = . >
(1 _ .Xi )[LN+1(xi)]
* Where L, are the Legendre polynomials, the
Gauss points (interior points) are zeroes of

LN+1



Interpolation Polynomials

 Basis functions are Legendre-Gauss-Lobatto-
Lagrange interpolation polynomials:

. -1 (1-x*)L,(x)
" N(N+DL,(x) x-x




Free Surface Model

» At moving boundary (0€2 (¢), also traction

boundary) btwn fluid & other continuum 1s

Neumann be, t;n, = T;=<-u,=T, the traction.

» Surface tension (0) modeled at this interface by
adding | a0 O K v; n; dA to RHS of Stokes problem

0€Q2_ () 1s for traction boundary,
K = curvature



Free Surface Model

* In2D, Kk =3s,,,

s, 1s a unit vector tangent to free surface segment from
pt. a to b,

o ¢ 18 a curvilinear coord. along segment

* So that faga(t) okv,ndAd=]"ov, S; ¢ dC

* Integrating by parts, noting that v, . = v, s;,
faga(t) OKV,n dA=- Iab OV;;8; S dE+(ov;s)S



Moving Mesh

* Account for moving mesh by adding another
term to RHS of Stokes’ problem:

jg(f) vi(uiwj)aJdV:jQ(t)VV ¥ (uw)dV:
(v,V:(uw))where w is the mesh velocity

» The mesh velocity provides for nodal coords.
to be updated as dx__./dt=w

node



Results

 Free surface, initially sinusoidal in shape

» Then allowed to vary according to differences in
initial fluid pressure compared to that above the
free surface

 Free surface gradually began to move and be
reshaped by the pressure imbalance



Free Surface
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At dimensionless =0.8, 200t time step; fluid pushing up the middle...
K=32 elements, N=5t order



Free Surface
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At dimensionless =1.6, 400" time step; appears to be flattened but fluid
still pushing up, vortex pair forming near free surface...



Free Surface

At dimensionless =2.4, 600™ time step; appears to be tlattened but fluid

pushed to sides at top, twin vortices moved down...



Free Surface
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At dimensionless =3.2, 800™ time step; not tlattening but seeming to be
reversing shape like an oscillating free surface; vortex pair back up...



Free Surface
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At dimensionless =6.4, 1600™ time step; not oscillating shape but free
surface breaking up; vortices broken up = then numerical instability



Free Surface: Finer Mesh
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At dimensionless =0.8, 200" time step; Finer mesh shows the same
thing but with better resolution: K=64, N=5




Free Surface: Finer Mesh
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At dimensionless =0.8, 200" time step; But 1sobars show pressure
gradient oscillating w/free surface



Free Surface: Finer Mesh

N

.. T__."‘.“Z':—.—__.._‘__-_ -

ﬂ
\\ b
B

At dimensionless =24, 6000™" time step; Finer mesh better details break-
up



Free Surface: Finer Mesh
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At dimensionless =24, 6000™ time step; Finer mesh better details break-
up & accompanying pressure distortions




Shape-Changing Wall

* Free surface was replaced with a compliant
wall that starts with a sinusoidal shape but that
shape varied sinusoidally with time as well.

* The fluid response contained regions where the
flow-field showed fluid circling up into the
high points of the sinusoidal-shaped wall and
down from the lower points.

» There appeared vortices oscillating with the
oscillating wall



Moving wall

» Non-time-varying sinusoidal-shaped wall given a
prescribed vertical velocity downward into the fluid
region,

* The fluid moved out through an unconstrained end.

* However, fluid became entrapped under a hump of
the sinusoidal shape.

* The simulation could not continue further beyond the
point where the non-compliant sinusoidal-shaped
wall reached the bottom of the fluid region



Conclusion

» The results obtained suggests that a compliant
wall can have its shape altered by the fluid
region 1t bounds and the reverse

* The results also show how the wall can
determine where fluid can flow and the way
that flow occurs



Future Work

* More combinations planned
» Extend to 3D
* Apply to carotid artery

» Extend SEM potential w/parallel numerical
libraries w/solvers, pre-conditioners, etc.
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