LATTICE BOLTZMANN METHOD for CFD

More @ LBE

Dr. Jacques C. Richard, <u>richard@aero.tamu.edu</u>
Dr. Sharath Girimaji, <u>girimaji@aero.tamu.edu</u>
Dr. Dazhi Yu, <u>dzyu@aero.tamu.edu</u>
Dr. Huidan Yu, <u>h0y5840@aero.tamu.edu</u>

12/1/2003

What makes up fluids

- Fluid made of small, individual molecules.
- Molecules are in a state of constant motion.
- Molecules are at continuous collision with each other.
- Molecule has internal structure.
- There are intermolecular forces.
- Macroscopic variables, such as pressure, temperature, and internal energy, are determined by the mass, velocity, and internal structure of molecules.

Modeling Fluids

Mean free path Knudsen number $Kn \equiv -$ Characteristic hydrodynamic length Microscopic Method : Molecular dynamics $Kn < \infty$ Mesoscopic Method : Boltzmann Equation $Kn < \infty$ Macroscopic Method: Navier-Stokes Equations *Kn* < 0.1 A Novel Method : Lattice Boltzmann Method *Kn*<0.1

Department of Aerospace Engineering •

Modeling of Fluids

Velocity distribution function

• Velocity distribution function: $F(c_i)$

Velocity Distribution Function

- Normalized Velocity distribution Function $f(c_i) = F(c_i) / N$
 - N: Number of molecules in system
- Characteristics of Distribution Function f

 $\int_{-\infty}^{\infty} Nf(c_i) dV_c = N \Rightarrow \int_{-\infty}^{\infty} f(c_i) dV_c = 1$
 $\overline{Q} = \frac{\int_{N} Q dN}{N} = \frac{\int_{-\infty}^{\infty} Q(c_i) Nf(c_i) dV_c}{N} = \int_{-\infty}^{\infty} Qf dV_c$

 \overline{Q} is the average value of Q for all molecules Macrosopic velocity: $\vec{u} = \mathbf{u} = \overline{\mathbf{c}} = \int_{-\infty}^{\infty} c_i f dV_c$

Department of Aerospace Engineering

Velocity Distribution Function under Equilibrium State

• Equilibrium State

In equilibrium state, the number of molecules in c_i is constant.

 Distribution function under equilibrium state is the Maxwellian distribution:

$$f^{eq}(c_i) = \left(\frac{m}{2\pi kT}\right)^{3/2} e^{-\frac{m}{2kT}\left[(c_1 - u_1)^2 + (c_2 - u_2)^2 + (c_3 - u_3)^2\right]}$$

- *T*: temperature;
- *k* : Boltzmann constant (1.38054×10⁻¹⁶ erg-K)
- *m*: mass of molecule
- *u* : macroscopic velocity

Boltzmann Equation

 Under non-equilibrium state distribution function

$$f = f(x_i, c_i, t) = f(\mathbf{x}, \mathbf{c}, t)$$

• The molecular velocity distribution function has a <u>rate of change</u>, with respect to position and time, that is described by $\frac{\partial}{\partial t} [nf(c_i)] + c_j \frac{\partial}{\partial x_j} [nf(c_i)] = \left\{ \frac{\partial}{\partial t} [nf(c_i)] \right\}_{collision}$

Department of Aerospace Engineering

Collisions in fluids

- Molecules constantly collide with each other.
- Collision will change the velocity of molecules.
- In collision, the translational energy of molecule may transfer to internal energy, if molecule has internal structure.
- In general, the rate of collision depends on the molecule velocity, number density n(x), and temperature *T*.

Collision Operator in Boltzmann Equation

- Elastic-sphere molecule model
 - 1. no internal structure of molecule,
 - 2. the molecule is treated as a rigid ball,
 - 3. so no rotation and vibration,
 - 4. only translation.
- no attraction force between molecules.

Collision operator

• Rigid ball model gives: $\left\{\frac{\partial}{\partial t}[nf(c_i)]\right\}_{collision} = \int_{-\infty}^{\infty} \int_{0}^{2\pi} \int_{0}^{\pi} d^2 d^2 [f(c'_i)f(z'_i) - f(c_i)f(z_i)]g\sin\psi\cos\psi d\psi de dV_x$ g: relative velocity between two collided molecules $f(\mathbf{c}')f(\mathbf{z}'): \text{ replenishing of the molecules of class } \mathbf{c}_i$ $f(\mathbf{c}_i)f(\mathbf{z}_i): \text{ depleting of the molecules of class } \mathbf{c}_i$

Integration limits: ψ from 0 to $\pi/2$; ε from 0 to 2π . z_i z_i z

Macroscopic variables

Quantities of interest

• Density $\rho = \int_{-\infty}^{\infty} mf dV_c$

Momentum

$$\rho \mathbf{u} = \int_{-\infty}^{\infty} m\mathbf{c} f dV_c$$

• Translational energy $e_{tr} = \int_{-\infty}^{\infty} \frac{1}{2} (\mathbf{c} - \overline{\mathbf{c}})^2 f dV_c$

Moments of the Boltzmann Equation

Let $Q(c_i)$ be a function of c_i but not of position and time, the equation of transfer of $Q(c_i)$ is $\int_{-\infty}^{\infty} Q(c_i) \left\{ \frac{\partial}{\partial t} [nf(c_i)] + c_j \frac{\partial}{\partial x_j} [nf(c_i)] \right\} dV_c = \int_{-\infty}^{\infty} Q(c_i) \left\{ \frac{\partial}{\partial t} [nf(c_i)] \right\}_{collision} dV_c$ $= \frac{\partial}{\partial t} [n\overline{Q}] + \frac{\partial}{\partial x_j} [n\overline{Q}c_i] = \Delta[Q]$

if Q=m, mc_i , $mc^2/2$, the change in Q for both molecules must be zero in collision. We have $\frac{\partial}{\partial t}[n\overline{Q}] + \frac{\partial}{\partial x_j}[n\overline{Q}c_i] = 0$

Let Q = m, we have the continuity equation in NS. We recover the momentum and energy equations in NS when $Q = mc_i$, $mc^2/2$

The Conservation Equations from the Boltzmann Equation

$$Q = m \qquad \qquad \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho \overline{c}_j \right) = 0$$

$$Q = mc_{i} \qquad \frac{\partial}{\partial t} \left(\rho \overline{c}_{j}\right) + \frac{\partial}{\partial x_{i}} \left(\rho \overline{c}_{j} \overline{c}_{i}\right) = -\frac{\partial p}{\partial x_{j}} + \frac{\partial \tau_{ij}}{\partial x_{i}}$$
$$Q = mc^{2}/2 \qquad \frac{\partial}{\partial t} \left[\rho \left(e + \overline{c}^{2}\right)\right] + \frac{\partial}{\partial x_{i}} \left[\rho \overline{c}_{i} \left(h + \frac{1}{2} \overline{c}^{2}\right)\right] = \frac{\partial}{\partial x_{i}} \left(\tau_{ij} \overline{c}_{k} - q_{i}\right)$$

Kinetic theory: $e = e_{tr} = \overline{C^2}/2$ $h = h_{tr} = e_{tr} + p/\rho = 5RT/2$

New definition:
$$\rho = nm \qquad p = \rho [C_1^2 + C_2^2 + C_3^2]/3$$
$$q_j = \rho C_j C^2$$
$$C = \mathbf{c} - \mathbf{c} \qquad \text{tr: translational}$$

The Chapmen-Enskog Solution of Boltzmann Equation

• Non-dimensional form $\xi \left\{ \frac{\partial}{\partial \hat{t}} \left[\hat{n}\hat{f} \right] + \hat{c}_{j} \frac{\partial}{\partial \hat{x}_{j}} \left[\hat{n}\hat{f} \right] \right\} = \left\{ \frac{\partial}{\partial \hat{t}} \left[\hat{n}\hat{f} \right] \right\}_{collision}$ *c*,: reference molecule speed ; *L*: characteristic length

v_r: reference collision frequency

 $\xi = c_r / L v_r$ is proportional to the Knudsen #, the ratio of the mean free path to a characteristic length, thus it is a very small value. Chapman-Enskog expansion (simplifying definitions $(f = \hat{n}f)$:

$$f(\mathbf{x}, \mathbf{c}, t) = f^{(eq)}(\mathbf{x}, \mathbf{c}, t) + \xi f^{(1)}(\mathbf{x}, \mathbf{c}, t) + \dots$$

Solve the $f^{(l)}$, then we get the solution for f

Chapman-Enskog Procedure

 Taking the 1st order departure of *f* from the Maxwellian distribution as:

$$f(\mathbf{x}, \mathbf{c}, t) = f^{(eq)}(\mathbf{x}, \mathbf{c}, t) + \xi f^{(1)}(\mathbf{x}, \mathbf{c}, t) + \dots$$

Substituting into the Boltzmann equation:

$$\left(\frac{\partial f}{\partial t}\right)_{c} = \int \int \left[f^{(1)}(\mathbf{x}, \mathbf{c}', t)f^{(eq)}(\mathbf{x}, \mathbf{z}', t) + f^{(1)}(\mathbf{x}, \mathbf{z}', t)f^{(eq)}(\mathbf{x}, \mathbf{c}', t)\right] |\mathbf{z} - \mathbf{c}|n\sigma(\Omega)d\mathbf{V}_{z}d\Omega$$

$$-\int \int \left[f^{(1)}(\mathbf{x}, \mathbf{c}, t)f^{(eq)}(\mathbf{x}, \mathbf{z}, t) + f^{(1)}(\mathbf{x}, \mathbf{z}, t)f^{(eq)}(\mathbf{x}, \mathbf{c}, t)\right] |\mathbf{z} - \mathbf{c}|n\sigma(\Omega)d\mathbf{V}_{z}d\Omega$$

Chapman-Enskog Procedure

• Keeping only 1st order terms in the expansion:

$$\left(\frac{\partial f}{\partial t}\right)_{c} = \int \int \left[f^{(1)}(\mathbf{x},\mathbf{c},t)f^{(eq)}(\mathbf{x},\mathbf{z},t)\right] |\mathbf{z}-\mathbf{c}| n\sigma(\Omega) d\mathbf{V}_{z} d\Omega \approx -f^{(1)}(\mathbf{x},\mathbf{c},t)n\sigma_{tot}\overline{c}_{rel}$$

Where

o The average relative velocity btwn particles is c
 _{rel}
 o The total collision cross-section is σ
 _{tot}

 The collision frequency is v
 _r = v
 _c = nσ
 _{tot}c
 _{rel}

The "1st Order" Boltzmann Equation

 So the Boltzmann equation becomes, to 1st order:

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \nabla f = -\frac{1}{\lambda} \left(f - f^{(eq)} \right)$$

• Or

$$\frac{df}{dt} + \frac{1}{\lambda}f = \frac{1}{\lambda}f^{(eq)}$$

- On the characteristic line $\mathbf{c} = d\mathbf{x}/dt$
- Where $\lambda = 1 / v_r$

Integrating the "1st Order" BE

• Integrating the "1st Order" BE over a time step δ_t :

$$f(\mathbf{x} + \mathbf{c}\delta_t, \mathbf{c}, t + \delta_t) = \frac{1}{\lambda} e^{-\delta_t / \lambda} \int_0^{\delta_t} e^{t' / \lambda} f^{(eq)}(\mathbf{x} + \mathbf{c}t', \mathbf{c}, t + t') dt' + e^{-\delta_t / \lambda} f(\mathbf{x}, \mathbf{c}, t)$$

• Assuming δ_t is small enough & $f^{(eq)}$ is smooth enough locally, then for $0 \le t' \le \delta_t$: $f^{(eq)}(\mathbf{x} + \mathbf{c}t', \mathbf{c}, t + t') = \left(1 - \frac{t'}{\delta_t}\right) f^{(eq)}(\mathbf{x}, \mathbf{c}, t) + \frac{t'}{\delta_t} f^{(eq)}(\mathbf{x} + \mathbf{c}\delta_t, \mathbf{c}, t + \delta_t) + O(\delta_t^2)$

Department of Aerospace Engineering •

Integrating the "1st Order" BE

- Putting these last 2 eqs. together: $f(\mathbf{x} + \mathbf{c}\delta_t, \mathbf{c}, t + \delta_t) - f(\mathbf{x}, \mathbf{c}, t) = (e^{-\delta_t / \lambda} - 1) [f(\mathbf{x}, \mathbf{c}, t) - f^{(eq)}(\mathbf{x}, \mathbf{c}, t)]$ $+ \left[1 + \frac{\lambda}{\delta_t} (e^{-\delta_t / \lambda} - 1)\right] [f^{(eq)}(\mathbf{x} + \mathbf{c}\delta_t, \mathbf{c}, t + \delta_t) - f^{(eq)}(\mathbf{x}, \mathbf{c}, t)]$
- Expanding $e^{-\delta_t / \lambda}$ in a Taylor series while neglecting terms of $O(\delta_t^2)$ and also defining $\tau = \lambda / \delta_t$: $f(\mathbf{x} + \mathbf{c}\delta_t, \mathbf{c}, t + \delta_t) - f(\mathbf{x}, \mathbf{c}, t) = -\frac{1}{\tau} [f(\mathbf{x}, \mathbf{c}, t) - f^{(eq)}(\mathbf{x}, \mathbf{c}, t)]$

Department of Aerospace Engineering

Low Mach Number Approximation

In LBE, the equilibrium distribution

$$f^{(eq)} = \left(\frac{m}{2\pi kT}\right)^{D/2} e^{-\frac{m}{2kT}(\mathbf{c}-\mathbf{u})^2} = \left(\frac{m}{2\pi kT}\right)^{D/2} e^{-\frac{m}{2kT}\mathbf{c}^2} e^{-\frac{m}{2kT}(2\mathbf{c}\cdot\mathbf{u}-\mathbf{u}\cdot\mathbf{u})}$$

 is obtained from a truncated small velocity expansion or low-Mach-number approximation

$$f^{(eq)} = \left(\frac{m}{2\pi kT}\right)^{D/2} e^{-\frac{m}{2kT}\mathbf{c}^2} \left[1 + \frac{\mathbf{c} \cdot \mathbf{u}}{kT} + \frac{1}{2}\left(\frac{\mathbf{c} \cdot \mathbf{u}}{kT}\right)^2 - \frac{\mathbf{u} \cdot \mathbf{u}}{2kT}\right] + O(u^3)$$

• D = number of dimensions (e.g., D = 3 for 3D)

Department of Aerospace Engineering

Discretization of Phase Space

- Discretization of momentum space is coupled to that of configuration space such that a lattice structure is obtained
- This is a special characteristic of LBE
- Quadrature must be accurate enough to
 - Preserve conservation constraints exactly
 - Retain necessary symmetries of Navier-Stokes

Discretization of Phase Space

- The first 2 order approximations of the distribution function (f^(eq), f⁽¹⁾) are used to derive Navier-Stokes
- So quadrature used must evaluate hydrodynamic moments w.r.t f^(eq) exactly:
 - $\rho: \quad 1, c_i, c_i c_j,$
 - **u**: $C_i, C_i C_j, C_i C_j C_k$,
 - $T: \quad c_i c_j, c_i c_j c_k, c_i c_j c_k c_l,$
- Assuming particle has linear d.o.f. only, d.o.f=D

Department of Aerospace Engineering

Discretization of Phase Space

- To obtain Navier-Stokes, must evaluate moments of 1, c, ..., c⁶, w.r.t. wt. fnctn e^{-mc•c/2kT} exactly
- Hydro-dynamic moments of $f^{(eq)}$: $I = \int \psi(\mathbf{c}) f^{(eq)} d\mathbf{c}$ $I = \left(\frac{m}{2\pi kT}\right)^{D/2} \int \psi(\mathbf{c}) e^{-\frac{m}{2kT}\mathbf{c}^2} \left[1 + \frac{\mathbf{c} \cdot \mathbf{u}}{kT} + \frac{1}{2}\left(\frac{\mathbf{c} \cdot \mathbf{u}}{kT}\right)^2 - \frac{\mathbf{u} \cdot \mathbf{u}}{2kT}\right] d\mathbf{c}$
- Use Gaussian-type quadrature to evaluate

 $\int \Psi(x) e^{-x^2} dx$

In Cartesian coordinates: Ψ_{mn}(c) = c^m_xcⁿ_y
 Then

$$I = \int_{-\infty}^{\infty} \psi_{mn}(\mathbf{c}) f^{(eq)} d\mathbf{c} = \frac{m}{\pi} \left(\sqrt{2kT} \right)^{m+n} \times \left\{ \left(1 - \frac{\mathbf{u}^2}{2kT} \right) I_m I_n + \frac{2 \left(u_x I_{m+1} I_n + u_y I_m I_{n+1} \right)}{\sqrt{2kT}} + \frac{u_x^2 I_{m+2} I_n + 2u_x u_y I_{m+1} I_{n+1} + u_x^2 I_m I_{n+2}}{RT} \right\}$$

Where
$$I_m = \int e^{-\zeta^2} \zeta^m d\zeta, \ \zeta = c/\sqrt{2kT}$$

 $-\infty$

• Use 3rd order Hermite formula to evaluate

$$I_m = \int_{-\infty}^{\infty} e^{-\zeta^2} \zeta^m d\zeta = \sum_{j=1}^{3} \omega_j \zeta_j^m$$

- Where the 3 abscissas of the quadrature are: $\zeta_1 = -\sqrt{3/2}, \ \zeta_2 = 0, \ \zeta_3 = \sqrt{3/2}$
- And the corresponding weight coefficients are:

$$\omega_1 = \sqrt{\pi} / 6, \ \omega_2 = 2\sqrt{\pi} / 3, \ \omega_3 = \sqrt{\pi} / 6$$

Moment integral becomes

$$I_m = \frac{m}{\pi} \sum_{i,j=1}^{3} \omega_i \omega_j \psi(c_{i,j}) \left\{ 1 + \frac{c_{i,j} \bullet \mathbf{u}}{kT} + \frac{(c_{i,j} \bullet \mathbf{u})^2}{2(kT)^2} - \frac{\mathbf{u}^2}{2kT} \right\}$$

• From which, parts of the equilibrium distribution function are identified as

$$f_{i,j}^{(eq)} = \frac{m}{\pi} \omega_i \omega_j \left\{ 1 + \frac{c_{i,j} \bullet \mathbf{u}}{kT} + \frac{\left(c_{i,j} \bullet \mathbf{u}\right)^2}{2\left(kT\right)^2} - \frac{\mathbf{u}^2}{2kT} \right\}$$

- Select possible molecular velocities on 2D square lattice to go in as many directions of such square
- The chosen velocities have a certain symmetry to account for molecules moving in any and all directions independent of directions (isotropy)
- For square this means sides & corners
- This means 9 possible velocities
- To go w/at least 9 terms in $\psi_{mn}(\mathbf{c})$

Department of Aerospace Engineering

• The 9 possible velocities are:

$$e_{\alpha} = \begin{cases} (0,0), & \alpha = 0, \\ (\cos\theta_{\alpha},\sin\theta_{\alpha})c, & \theta_{\alpha} = (\alpha-1)\pi/2, & \alpha = 1,2,3,4, \\ \sqrt{2}(\cos\theta_{\alpha},\sin\theta_{\alpha})c, & \theta_{\alpha} = (\alpha-5)\pi/2 + \pi/4, & \alpha = 5,6,7,8 \end{cases}$$

Then parts of the equilibrium distribution function are identified as

$$f_{\alpha}^{(eq)} = mw_{\alpha} \left\{ 1 + \frac{\mathbf{e}_{\alpha} \bullet \mathbf{u}}{c^{2}} + \frac{\left(\mathbf{e}_{\alpha} \bullet \mathbf{u}\right)^{2}}{2c^{4}} - \frac{\mathbf{u}^{2}}{2c^{2}} \right\}$$

• Where the corresponding weight coefficients are now

$$w_{\alpha} = \frac{\omega_{i}\omega_{j}}{\pi} = \begin{cases} 4/9, & i = j = 2, & \alpha = 0, \\ 1/9, & i = 1, j = 2, \dots, & \alpha = 1, 2, 3, 4, \\ 1/36, & i = j = 1, & \alpha = 5, 6, 7, 8 \end{cases}$$

• And $RT = c_s^2 = c^2/3$ or

$$\left\|\sqrt{RT}\vec{\zeta}\right\| = \sqrt{3RT} = c$$

3D Cube Lattice-Boltzmann Model 27-bit

• This is a straight-forward extension of 2D:

$$I_{m} = \frac{m}{\pi^{3/2}} \sum_{i,j,k=1}^{3} \omega_{i} \omega_{j} \omega_{k} \psi(c_{i,j,k}) \left\{ 1 + \frac{c_{i,j,k} \bullet \mathbf{u}}{kT} + \frac{(c_{i,j,k} \bullet \mathbf{u})^{2}}{2(kT)^{2}} - \frac{\mathbf{u}^{2}}{2kT} \right\}$$

where

$$e_{\alpha} = \begin{cases} (0,0,0) & \alpha = 0, \\ (\pm 1,0,0)c, (0,\pm 1,0)c, (0,0,\pm 1)c, & \alpha = 1,2,...,6, \\ (\pm 1,\pm 1,0)c, (\pm 1,0,\pm 1)c, (0,\pm 1,\pm 1)c, & \alpha = 7,8,...,18, \\ (\pm 1,\pm 1,\pm 1)c, & \alpha = 19,20,...,26 \end{cases}$$

3D Cube Lattice-Boltzmann Model 27-bit

 Then parts of the equilibrium distribution function are identified as

$$f_{\alpha}^{(eq)} = mw_{\alpha} \left\{ 1 + \frac{3\mathbf{e}_{\alpha} \bullet \mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha} \bullet \mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right\}$$

where

$$w_{\alpha} = \begin{cases} 8/27 & i = j = k = 2 & \alpha = 0, \\ 2/27, & i = j = 2, k = 1, ..., & \alpha = 1, 2, ..., 6, \\ 1/54, & i = j = 1, k = 2, ..., & \alpha = 7, 8, ..., 18, \\ 1/216, & i = j = k = 1, ..., & \alpha = 19, 20, ..., 26 \end{cases}$$

Lattice Boltzmann Equation

• Equilibrium distribution function for f_{α}

$$f_{\alpha}^{(eq)} = \rho w_{\alpha} [1 + \frac{3}{c^2} e_{\alpha} \cdot u + \frac{9}{2c^4} (e_{\alpha} \cdot u)^2 - \frac{3}{2c^2} u \cdot u]$$

$$\Delta \text{ 9-velocity model(2D):} \qquad w_{\alpha} = \begin{cases} 4/9, & \alpha = 0\\ 1/9, & \alpha = 1,3,5,7\\ 1/36, & \alpha = 2,4,6,8 \end{cases}$$

$$\Delta \text{ 15-velocity model:} \qquad w_{\alpha} = \begin{cases} 2/9, & \alpha = 0\\ 1/9, & \alpha = 1,2,\dots,6\\ 1/72, & \alpha = 7,8,\dots,14. \end{cases}$$

$$\Delta \text{ 19-velocity model:} \qquad w_{\alpha} = \begin{cases} 1/3, & \alpha = 0\\ 1/18, & \alpha = 1,2,\dots,6\\ 1/36, & \alpha = 7,8,\dots,18. \end{cases}$$

Qian YH, d'Humieres D, Lallemand P. Lattice BGK Models for Navier Stokes Equation. Europhys Lett 1992;17:479-484.

Examples of 3-D lattice models

Lattice Boltzmann Equation

- Macroscopic variables is obtained from: $\rho = \sum_{\alpha=0}^{N} f_{\alpha} = \sum_{\alpha=0}^{N} f_{\alpha}^{(eq)}, \quad \rho u = \sum_{\alpha=1}^{N} e_{\alpha} f_{\alpha} = \sum_{\alpha=1}^{N} e_{\alpha} f_{\alpha}^{(eq)}$
- Chapman-Enskog analysis (multi-scale expansion) ⇒
 NS Eqs. recovered in near incompressible flow limit.
- Equation of state: $p = \rho c_s^2 = \rho / 3$
- What are the advantages?
- What are potential benefits comparing with the standard CFD methods for the Navier-Stokes equations?
- Let's look at the actual implementation:

LBGK scheme.

Lattice Boltzmann Equation

LBGK Scheme: discretization in time & space \Rightarrow $f_a(\mathbf{x}_i + \mathbf{e}_a dt, t + dt) - f_a(\mathbf{x}_i, t) = -\frac{1}{\tau} [f_\alpha(\mathbf{x}_i, t) - f_\alpha^{(eq)}(\mathbf{x}_i, t)]$

Viscosity:

$$v = (\tau - 1/2) c_s^2 \delta t$$

- Order of accuracy: 2nd in x & 1st in t.
- Computation:

collision step: $\tilde{f}_{\alpha}(\mathbf{x}_{i}, t) - f_{\alpha}(\mathbf{x}_{i}, t) = -\frac{1}{\tau} [f_{\alpha}(\mathbf{x}_{i}, t) - f_{\alpha}^{(eq)}(\mathbf{x}_{i}, t)]$ streaming step: $f_{\alpha}(\mathbf{x}_{i} + \mathbf{e}_{a}dt, t + dt) = \tilde{f}_{\alpha}(\mathbf{x}_{i}, t)$

- Advantages:
 - collision step is local; streaming step takes no computation.
 - explicit in form, easy to implement, and natural to parallelize.
 - Pressure is obtained simply as: $p = \rho c_s^2 = \rho / 3$

Department of Aerospace Engineering

Computational Procedure

Boltzmann's H-theorem

- Generally, macroscopic processes are irreversible.
- The relaxation to a Maxwellian distribution as a result of collisions, is an irreversible process.
- *H*-theorem states that if the distribution function evolves according to the Boltzmann equation, then for a uniform gas in the absence of external forces *H* can <u>never increase</u>: dH = 0 $H = \int_{-\infty}^{\infty} dI = dW$

$$\frac{dH}{dt} < 0 \qquad \qquad H = \int_{-\infty}^{\infty} f \log f dV_c$$

 if we begin with a uniform gas having a nonequilibrium distribution function, *H* decreases until the gas relaxes to the equilibrium distribution when *H* attains a minimum value

Applications of LBE

- Simulation of incompressible flows
- Fully compressible and thermal flows
- Multi-phase and multi-component flows
- Particulate Suspensions
- Turbulent Flows
- Micro Flows

Streamlines in the cavity flow at Re=100

Instantaneous streamlines for channel flow over an asymetrically placed cylinder at Re=100

NACA 0012 airfoil

Block and lattice layout for flow over NACA 0012

The lattice spacing is reduced by a factor 32 for graphical clarity

Streamlines, pressure contour, velocity vector for uniform flow over NACA 0012 airfoil at Re=2000.

Comparing *Cd* between present simulation and Xfoil calculation vs. *Re* for NACA0012 flow.

 The straight line is the slope according to the laminar boundary layer theory

Implementation of complex LBE model.

- For complicated problems, <u>new LBE</u> <u>models</u> may need to be designed.
- The number of particle velocities in new models can vary.
- Hybrid modes which incorporate finite different method in LBE need to be considered.

References for LBE

McNamara G, Zanetti G. Use of the Boltzmann equation to simulate lattice-gas automata. Phys Rev Lett 1988; 61: 2332 –2335.

Higuera FJ, Jemenez J. Boltzmann approach to lattice gas simulations. Europhys Lett 1989;9:663-668.

Koelman JMVA. A simple lattice Boltzmann scheme for Navier-Stokes fluid flow. Europhys Lett 1991;15:603-607.

Qian YH, d'Humieres D, Lallemand P. Lattice BGK Models for Navier Stokes Equation. Europhys Lett 1992;17:479-484.

Chen H, Chen S, Matthaeus WH. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Phys Rev A 1992;45:R5339-R5342.

d'Humieres D. Generalized lattice Boltzmann equations, In Rarefied Gas Dynamics: Theory and Simulations, ed. by D. Shizgal and D.P. Weaver. Prog. in Astro. Aero. 1992;159:450-458.

Bhatnagar PL, Gross EP, Krook M. A model for collision processes in gases, I. small amplitude processes in charged and neutral one-component system. Phys Rev 1954;94:511-525.

He X, Luo L-S. A priori derivation of the lattice Boltzmann equation. Phys Rev E 1997;55:R6333-R6336.

He X, Luo L-S. Theory of the lattice Boltzmann equation: From Boltzmann equation to lattice Boltzmann equation. Phys Rev E 1997;56:6811-6817.

Boltzmann Equation

- Studying molecules (class c_i) inside dV_x , we see total number of molecules whose velocity is between c_i and $c_i + dV_c$ is $nf(c_i) dV_x dV_c$
- Change of number of molecules in class c_i must result from convection of molecules across the surface of dV_c and dV_x or from intermolecular collision within

Number increased by convection thru dV_x

[•] Department of Aerospace Engineering •

Boltzmann Equation

- If there is no external force, the convection of molecules through the surface of dV_c is zero.
- The rate of increase of number of molecules in class c_i results from collision is:

$$\left\{\frac{\partial}{\partial t}\left[nf(c_{i})\right]\right\}_{collision}dV_{c}dV_{x}$$

• The total rate of increase of number of molecules of class c_i is:

$$\frac{\partial}{\partial t} \left[nf(c_i) \right] dV_c dV_x$$

Boltzmann Equation

- The rate of increase of the number of molecules of class c_i in the volume element is equal to the rate of increase by convection through surface of dV_x plus the rate of increase by collision.
- This gives the Boltzmann Equation:

$$\frac{\partial}{\partial t} [nf(c_i)] + c_j \frac{\partial}{\partial x_j} [nf(c_i)] = \left\{ \frac{\partial}{\partial t} [nf(c_i)] \right\}_{collision}$$

How to determine the collision operator?

Department of Aerospace Engineering

Solid wall boundary

After collision, set: $\tilde{f}_3(x_0) = \tilde{f}_7(x_1)$

bounce back idea

Ghost point

If the wall has a velocity *u*, momentum flux can be added:

$$\tilde{f}_3(x_0) = \tilde{f}_7(x_1) + 6\rho w_3(\mathbf{e}_3 \cdot \mathbf{u})$$

Implementation in moving boundary problems

Particles are moving; they may belong to different processors at different time.

Multi-block method in LBE

Implementation of adaptive grid method in LBE

Around the corner, we put fine grids. We may also need to increase grid resolution during computation.

Flows in porous media

In solid region, <u>computation and</u> <u>memory are not</u> <u>required</u>.

Boltzmann's H Theorem

- Generally, entropy, S, is defined to be related to the # of possible arrangements of molecules
- In other words, entropy is a function of # of possible micro-states, Ω
- The probability distribution function provides a way of determining the # of possible macro-states,
- Because Ω for combined systems of certain microstates is a product of each, $\Omega_{AB} = \Omega_A \ \Omega_B$
- And because total entropy is $S_{AB} = S_A + S_B$

 $S = -k \log \Omega = -k \int f \log f \, dV_c,$

Boltzmann's H Theorem

Differentiating *H*, using Boltzmann's eq., & combining terms:

$$\frac{dH}{dt} = -\frac{1}{4} \iint \left[f(\mathbf{c}')f(\mathbf{z}') - f(\mathbf{c})f(\mathbf{z}) \right] \log \frac{f(\mathbf{c})f(\mathbf{z})}{f(\mathbf{c}')f(\mathbf{z}')} |\mathbf{c} - \mathbf{z}| \sigma d\Omega dV_z \le 0$$

- *H* theorem shows why entropy is automatically satisfied if <u>Boltzmann's eq. is satisfied</u>
- Many CFD schemes do not easily guarantee that they will not violate entropy
- Through solving BE,
 - entropy is inherently & automatically satisfied and
 - fluid field is found from *f* rather than using *f* to find properties to use in Navier-Stokes eqs. derived from BE

