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What makes up fluids
   Fluid made of small, individual molecules.

   Molecules are in a state of constant motion.

   Molecules are at continuous collision with
each other.

   Molecule has internal structure.

   There are intermolecular forces.

   Macroscopic variables, such as pressure,
temperature, and internal energy, are determined
by the mass, velocity, and internal structure of
molecules.
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Modeling Fluids
Knudsen number

Microscopic Method : Molecular dynamics
                                            Kn<∞
Mesoscopic Method : Boltzmann Equation
                                            Kn<∞
Macroscopic Method: Navier-Stokes Equations
                                            Kn <0.1
A Novel Method       :  Lattice Boltzmann Method
                                            Kn<0.1

� 

Kn ! Mean free path
Characteristic hydrodynamic length



･  Department of Aerospace Engineering･

Modeling of Fluids

Boltzmann
Equation

Moment
Equations

Discrete
Velocity model

Direct simulation
Monte Carlo

Lattice Boltzmann
Equation

Discretized phase-space & time

Kinetic Theory, Chapman-Enskog analysis

Navier Stokes Equations

microscopic

macroscopic

Taylor expansion in space and time
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Velocity distribution function

 Velocity distribution function: F(ci)

cdV
Physical space : ( x1, x2, x3 ) Velocity space: ( c1, c2, c3 )

ic

m   :  mass of molecule
!N : number of molecules in !Vx

n(xi) : local number density

x2

x3

x1

xi

c2

ci

c3

c1

� 

! = lim
"Vx #0

m "N
"Vx

= mn(xi)
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F(ci) = lim
!Vc "0

!N
!Vc
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Velocity Distribution Function

 Normalized Velocity distribution Function
f(ci) = F(ci) / N
N: Number of molecules in system

 Characteristics of Distribution Function  f
    1.

     2.

                     is the average value of Q for all molecules
Macrosopic velocity:
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Velocity Distribution Function under
Equilibrium State

 Equilibrium State
     In equilibrium state, the number of molecules in ci is constant.

 Distribution function under equilibrium state is the
Maxwellian distribution:

T: temperature;
k : Boltzmann constant (1.38054"10-16 erg-K)
m: mass of molecule
u : macroscopic velocity

ic
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Boltzmann Equation

 Under non-equilibrium state distribution
function
f = f(xi, ci, t) = f(x, c, t)

 The molecular velocity distribution function
has a rate of change, with respect to position
and time, that is described by
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Collisions in fluids

   Molecules constantly collide with each other.

   Collision will change the velocity of molecules.

   In collision, the translational energy of molecule may transfer
to internal energy, if molecule has internal structure.

   In general, the rate of collision depends on the molecule
velocity, number density n(x), and temperature T.

zi

ci

z´i

c´i
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Collision Operator in Boltzmann Equation
 Elastic-sphere molecule model

1. no internal structure of molecule,
2. the molecule is treated as a rigid ball,
3. so no rotation and vibration,
4. only translation.

 no attraction force between molecules.

Rigid elastic spheres

Repulsion

Attraction

True representation

d

r

∞

d: diameter of molecule; r: distance between molecules 
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Collision operator
  Rigid ball model gives:

g: relative velocity between two collided molecules

f(c´i)f(z´i): replenishing of the molecules of  class ci

f(ci)f(zi) : depleting of the molecules of  class ci

Integration limits: # from 0 to "/2 ; $ from 0 to 2".

Original collision
Depletion of ci and zi

zi

ci

z´i

c´i

zi

ci

z´i

c´i

Inverse collision
Replenishing of ci and zi
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!
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Macroscopic variables

Quantities of interest

 Density

 Momentum

 Translational energy
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! = mfdVc"#

#$
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!u = mcfdVc"#
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Moments of the Boltzmann Equation
 Let Q(ci) be a function of ci  but not of position

and time, the equation of transfer of Q(ci) is



 if Q=m, mci, mc2/2, the change in Q for both
molecules must be zero in collision. We have

Let Q = m, we have the continuity equation in NS. We recover the
momentum and energy equations in NS when Q=mci, mc2/2
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The Conservation Equations from the
Boltzmann Equation

New definition:  %ij = -[& CiCj - p 'ij] qj = & Cj C2

   C = c - c

Kinetic theory:  e = etr = C2/2 h = htr = etr + p/& = 5RT/2

  & = nm p = &[C1
2 + C2

2 + C3
2 ]/3

tr: translational

Q = m

Q = mci

Q = mc2/2
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The Chapmen-Enskog Solution of
Boltzmann Equation

 Non-dimensional form

cr: reference molecule speed ;  L: characteristic length

vr: reference collision frequency

( = cr / L vr is proportional to the Knudsen #, the ratio of the mean
free path to a characteristic length, thus it is a very small value.
   Chapman-Enskog expansion (simplifying definitions (           ):

f(x, c, t) = f(eq)(x, c, t) + ( f(1)(x, c, t) + …
Solve the f(l) , then we get the solution for f � 

f = ˆ n ̂  f 
� 
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Chapman-Enskog Procedure

 Taking the 1st order departure of f from the
Maxwellian distribution as:
f(x, c, t) = f(eq)(x, c, t) + ( f(1)(x, c, t) + …

 Substituting into the Boltzmann equation:
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( f (1)(x,c,t) f (eq )(x,z,t) + f (1)(x,z,t) f (eq )(x,c,t)[ ] z ( c n) *( )dVzd*++
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Chapman-Enskog Procedure
 Keeping only 1st order terms in the expansion:

 Where
o The average relative velocity btwn particles is
o The total collision cross-section is )tot

 The collision frequency is
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The “1st Order” Boltzmann Equation

 So the Boltzmann equation becomes, to
1st order:

 Or

 On the characteristic line c = dx/dt
 Where * = 1 / +r

� 

!f
!t

+ c " #f = $ 1
%

f $ f (eq )( )

� 

df
dt

+ 1
!
f = 1

!
f (eq )
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Integrating the “1st Order” BE

 Integrating the “1st Order” BE over a time
step 't:

 Assuming 't is small enough & f(eq) is
smooth enough locally, then for 0≤t’≤'t:

� 

f (x + c!t ,c,t + !t ) = 1
"
e#! t /" et ' /" f (eq )(x + ct',c,t + t')dt'

0

! t$ + e#! t /" f (x,c,t)
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f (eq )(x + ct',c,t + t') = 1! t'
"t

# 
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f (eq )(x + c"t ,c,t + "t ) + O "t

2( )
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Integrating the “1st Order” BE

 Putting these last 2 eqs. together:

 Expanding  in a Taylor series while
neglecting terms of O('t

2) and also defining
% = */'t:
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Low Mach Number Approximation
 In LBE, the equilibrium distribution

  is obtained from a truncated small velocity
expansion or low-Mach-number approximation

 D = number of dimensions (e.g., D = 3 for 3D)
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Discretization of Phase Space
 Discretization of momentum space is

coupled to that of configuration space such
that a lattice structure is obtained

 This is a special characteristic of LBE
 Quadrature must be accurate enough to

• Preserve conservation constraints exactly
• Retain necessary symmetries of Navier-Stokes
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Discretization of Phase Space
 The first 2 order approximations of the distribution

function (f(eq), f(1)) are used to derive Navier-Stokes
 So quadrature used must evaluate hydrodynamic

moments w.r.t f(eq) exactly:
&: 1, ci, cicj,
u: ci, cicj, cicjck,
T: cicj, cicjck, cicjckcl,

 Assuming particle has linear d.o.f. only, d.o.f=D
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Discretization of Phase Space

 To obtain Navier-Stokes, must evaluate moments
of 1, c, …, c6, w.r.t. wt. fnctn e-mc•c/2kT exactly

 Hydro-dynamic moments of f(eq): I = ∫ #(c) f(eq) dc

 Use Gaussian-type quadrature to evaluate
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Square Lattice-Boltzmann Model 9-bit 2D

 In Cartesian coordinates:
 Then

 Where
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!mn (c) = cx
mcy

n
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I = !mn (c) f (eq )dc
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&
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Square Lattice-Boltzmann Model 9-bit 2D
 Use 3rd order Hermite formula to evaluate

 Where the 3 abscissas of the quadrature are:

 And the corresponding weight coefficients
are:
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Im = e!"
2
" md"
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$ = % j" j
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j=1

3

&
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!1 = " 3/2, ! 2 = 0, ! 3 = 3/2
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!1 = " /6, !2 = 2 " /3, !3 = " /6
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 Moment integral becomes

 From which, parts of the equilibrium
distribution function are identified as
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2D Square Lattice-Boltzmann Model 9-bit
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 Select possible molecular velocities on 2D square
lattice to go in as many directions of such square

 The chosen velocities have a certain symmetry to
account for molecules moving in any and all
directions independent of directions (isotropy)

 For square this means sides & corners
 This means 9 possible velocities
 To go w/at least 9 terms in #mn(c) 1

  2 3 4

 7

e2
 e 3

e1

e4

e5

e6
e7 e8

 5

 6  8

2D Square Lattice-Boltzmann Model 9-bit

2

3

4

56

7
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 The 9 possible velocities are:

� 

e! =
(0,0),
cos"! ,sin"!( )c,
2 cos"! ,sin"!( )c,
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"! = (! # 5)$ /2 + $ /4,
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2D Square Lattice-Boltzmann Model 9-bit
 Then parts of the equilibrium distribution function are

identified as

 Where the corresponding weight coefficients are now

 And RT = cs
2 = c2/3 or
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 This is a straight-forward extension of 2D:

 where
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Im = m
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3D Cube Lattice-Boltzmann Model 27-bit
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3D Cube Lattice-Boltzmann Model 27-bit

 Then parts of the equilibrium distribution
function are identified as

 where

� 

f!
(eq ) = mw! 1+ 3e! •u

c 2
+
9 e! •u( )2
2c 4

" 3u
2

2c 2
# 
$ 
% 

& % 

' 
( 
% 

) % 

� 

w! =

8 /27
2 /27,
1/54,
1/216,

i = j = k = 2
i = j = 2,k =1,...,
i = j =1,k = 2,...,
i = j = k =1,....,

! = 0,
! =1,2,...,6,
! = 7,8,...,18,
! =19,20,...,26

" 

# 
$ $ 

% 
$ 
$ 



･  Department of Aerospace Engineering･

• Equilibrium distribution function for f,

    

 ! 9-velocity model(2D):

 ! 15-velocity model:

 ! 19-velocity model:
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Lattice Boltzmann Equation

Qian YH, d'Humieres D, Lallemand P. Lattice BGK Models for Navier Stokes Equation.
Europhys Lett 1992;17:479-484.
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Examples of 3-D lattice models

2'x

6

8

 7

9
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2 1
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Q15D3 lattice

19-velocity 3-D
  lattice model

5

6

8

 7

9

10

11

12
15

16
17

2 1

4

3

13

18

14

Q19D3 lattice

15-velocity 3-D
  lattice model

2'x
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 Macroscopic variables is obtained from:

 Chapman-Enskog analysis (multi-scale expansion) -
NS Eqs. recovered in near incompressible flow limit.

 Equation of state:

 What are the advantages?
 What are potential benefits comparing with the standard CFD

methods for the Navier-Stokes equations?
 Let’s look at the actual implementation:

LBGK scheme.

,)(!=!="
=#

#
=#

#
N

0

eqN

0
ff !=!="

=#
##

=#
##

N

1

)eq(N

1
ff eeu

3/2 !! == scp

Lattice Boltzmann Equation
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  LBGK Scheme: discretization in time & space -
                    fa(xi + eadt, t + dt) - fa(xi, t) = -

 Viscosity: + = (%-1/2)
 Order of accuracy:  2nd in x &  1st in t.
 Computation:

collision step:
streaming step: fa(xi + eadt, t + dt) =

 Advantages:
• collision step is local; streaming step takes no computation.
• explicit in form, easy to implement, and natural to parallelize.
• Pressure is obtained simply as:

)],(),([
1 )( tftf i

eq
i xx !!"

#

tcs!
2

  

� 

˜ f ! (xi, t) " f! (xi, t) = "
)(

~
, tf ix!
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Lattice Boltzmann Equation
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    Collision:

Computational Procedure

     Streaming:

t=t+'t

Calculate physical variables
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˜ f !
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(t ) " 1
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f!
( t ) " f!

( t,eq )[ ]
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(t+"t ) xi + ei"t,t + "t( ) = f!

(t ) xi,t( )
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#= 0

N
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!(t+"t )u( t+"t ) = e# f#(t+"t )
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c 2
e! # u + 9

2c 4
(e! # u)2- 3

2c 2
u # u]

Initialization:

Assign f(eq)
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Boltzmann's H-theorem

 Generally, macroscopic processes are irreversible.
 The relaxation to a Maxwellian distribution as a result

of collisions, is an irreversible process.
 H-theorem states that if the distribution function

evolves according to the Boltzmann equation, then  for
a uniform gas in the absence of external forces H  can
never increase:

 if we begin with a uniform gas having a non-
equilibrium distribution function,  H  decreases until
the gas relaxes to the equilibrium distribution when H
attains a minimum value� 

dH
dt

< 0

� 

H = f log fdVc!"

"#
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Applications of LBE
 Simulation of incompressible flows

 Fully compressible and thermal flows

 Multi-phase and multi-component flows

 Particulate Suspensions

 Turbulent Flows

 Micro Flows
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Streamlines in the cavity flow at
Re=100
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Instantaneous streamlines for channel flow over
an asymetrically placed cylinder at Re=100
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NACA 0012 airfoil
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Block and lattice layout for flow over
NACA 0012

 The lattice spacing is reduced by a factor 32 for graphical
clarity
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Streamlines, pressure contour, velocity vector for
uniform flow over NACA 0012 airfoil at Re=2000.
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Comparing Cd between present simulation and
Xfoil calculation vs. Re for NACA0012 flow.

10 410 310 2
10 -2

10 -1

10 0

Present

1/Re       fitting

X-foil calculation

Re

Cd

1

2

1/2

 The straight line is the slope according to
the laminar boundary layer theory
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Rayleigh-Taylor Instability

Single mode perturbation

W = channel width

&h= heavy fluid
&l = lighter fluid

� 

Re = W Wg
!

= 2048

� 

A = !h " !l

!h + !l

= 0.5
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Implementation of complex LBE model.

 For complicated problems, new LBE
models may need to be designed.

 The number of particle velocities in
new models can vary.

 Hybrid modes which incorporate
finite different method in LBE need
to be considered.
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Boltzmann Equation

 Studying molecules (class ci) inside dVx, we
see total number of molecules whose velocity
is between ci and ci + dVc is
nf(ci) dVx dVc

 Change of number of molecules in class ci
must result from convection of molecules
across the surface of dVc and dVx or from
intermolecular collision within
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Number increased by convection thru dVx

1dx

3dx
The total number increase by
convection through surface

of dVx in unit time is:

ci is taken out of the differentiation
because of it is independent of xi

x2

x1

x3

dx1

dx3

dx2

c3n f(ci)dVcdx1dx2

c1n f(ci)dVcdx2dx3

� 

c2nf (ci) + !
!x2

c2nf (ci)[ ]dx2
" 
# 
$ 

% 
& 
' 
dVcdx1dx2

� 

c1nf (ci) + !
!x1

c1nf (ci)[ ]dx1
" 
# 
$ 

% 
& 
' 
dVcdx2dx3

� 

c3nf (ci) + !
!x3

c3nf (ci)[ ]dx3
" 
# 
$ 

% 
& 
' 
dVcdx1dx2

c2n f(ci)dVcdx1dx3
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!c j
"
"x j

nf (ci)[ ]dVcdVx
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Boltzmann Equation

 If there is no external force, the convection of
molecules through the surface of dVc is zero.

 The rate of increase of number of molecules in
class ci results from collision is:

  The total rate of increase of number of
molecules of class ci is:

ic

� 

!
!t

nf (ci)[ ]" 
# 
$ 

% 
& 
' collision

dVcdVx

� 

!
!t

nf (ci)[ ]dVcdVx
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Boltzmann Equation

 The rate of increase of the number of molecules of
class ci in the volume element is equal to the rate
of increase by convection through surface of dVx
plus the rate of increase by collision.

 This gives the Boltzmann Equation:

 How to determine the collision operator?

xdV

� 

!
!t

nf (ci)[ ] + c j
!
!x j

nf (ci)[ ] = !
!t

nf (ci)[ ]" 
# 
$ 

% 
& 
' collision
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Solid wall boundary

Ghost point

wall

x1

x0

Fluid point
After collision, set:

bounce back idea

If the wall has a velocity u, momentum flux can be
added:

� 

˜ f 7 x1( )

� 

˜ f 3 x0( )

� 

˜ f 3 x0( ) = ˜ f 7 x1( )

� 

˜ f 3 x0( ) = ˜ f 7 x1( ) + 6!w3 e3 "u( )
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Implementation in moving boundary
problems

p0 p1

p2

p3

Particles are moving; they may belong to different
processors at different time.
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Multi-block method in LBE

Different grid resolution
in different block.
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Implementation of adaptive grid method in
LBE

Around  the corner, we put fine grids.
We may also need to increase grid
resolution during computation.
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Flows in porous media

In solid region,
computation and
memory are not
required.
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Boltzmann’s H Theorem
 Generally, entropy, S, is defined to be related to the

# of possible arrangements of molecules
 In other words, entropy is a function of # of

possible micro-states, .
 The probability distribution function provides a

way of determining the # of possible macro-states,
 Because . for combined systems of certain micro-

states is a product of each, .AB = .A  .B
 And because total entropy is SAB = SA + SB

 S = - k log . = - k ∫  f log f dVc,



･  Department of Aerospace Engineering･

Boltzmann’s H Theorem
 Differentiating H, using Boltzmann’s eq., & combining

terms:

 H theorem shows why entropy is automatically satisfied if
Boltzmann’s eq. is satisfied

 Many CFD schemes do not easily guarantee that they will
not violate entropy

 Through solving BE,
• entropy is inherently & automatically satisfied and
• fluid field is found from f rather than using f to find properties to

use in Navier-Stokes eqs. derived from BE

� 

dH
dt

= ! 1
4

f (c') f (z') ! f (c) f (z)[ ] log f (c) f (z)
f (c') f (z')

c ! z"d#dVz$$ % 0


