Magnetic Field Effects on Axis-Switching and Instabilities in Rectangular Plasma Jets

Jacques C. Richard, Benjamin M. Riley, Sharath S. Girimaji and Kurnchul Lee

Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141

richard@aero.tamu.edu, br52@tamu.edu, girimaji@aero.tamu.edu, and klee@tamu.edu

Outline

- Motivation
- Rectangular jets
- Magnetohydrodynamics
- Lattice Boltzmann Method for Magnetohydrodynamics
- MHD Rectangular Jets
- Conclusion

Motivation

- High-Speed Flow Control, Space Propulsion, Materials Processing, Jet casting
- Even nano-tube processing (Poisson-Boltzmann eqs., Sigmund *et al.* [2000])
- Previous works used B fields for flow control of channel flows, scramjet inlets, hypersonic boundary layers
- Most previous works: 2D or axi-symmetric jet; uniform, transverse B fields

Current Work

- 3D RJ, axi-symmetric magnet loop
- More flow control options than just jet deceleration
- Loop used in space propulsion (MPD thrusters, VASIMR, magnetic nozzle)

Rectangular Jet Flow Characteristics

- Rectangular Jet's (RJ) are inherently unstable.
- Secondary flows cause minor axis shear layer growth to exceed that of the major axis.
- This instability (Kelvin Helmholtz) causes unsteadiness and axis-switching.
- Makes RJ's more easily manipulated for flow control.

Secondary Flows

No Axis-Switching at Low Reynolds numbers

Axis-Switching at Higher Reynolds number

Picture is view of the streamwise plane (Y-Z) of the jet flow

Gutmark EJ and Grinstein FF [1999]

Magnetohydrodynamics

Navier-Stokes & Maxwell's eqs. lead to MHD eqs. subject to key assumptions

Assume quasi-charge neutrality, two-fluid eqs. (ions & e-) can be simplified to single-fluid.

Cyclotron period << hydrodynamic processes' relaxation times

Radii, Debye length << hydrodynamic length scales

$$rac{\omega_{pe}^{-1}}{ au_{H}} \ll 1 \qquad \qquad rac{\lambda_{D}}{\lambda_{H}} \ll 1 \qquad \qquad rac{R_{e}}{\lambda_{H}} \ll rac{R_{i}}{\lambda_{H}} \ll$$

Magnetohydrodynamic Eqns.

The resulting magnetohydrodynamic equations are:

$$\rho \frac{\partial \mathbf{v}}{\partial t} + \rho \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p - \nabla \left(\frac{B^2}{2\mu_0}\right) + \frac{1}{\mu_0} (\mathbf{B} \cdot \nabla) \mathbf{B} + \mu \nabla^2 \mathbf{v} \quad \text{(LM)}$$

$$\frac{\partial \mathbf{B}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{B} = \mathbf{B} \cdot \nabla \mathbf{v} + \frac{\eta}{\mu_0} \nabla^2 \mathbf{B} \qquad \text{(Magnetic induction)}$$

 $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \qquad \text{(Mass Conservation)}$

 $\nabla \cdot \mathbf{B} = 0$ (Solenoidal **B**, no magnetic monopoles)

MHD Characteristic Parameters

• Magnetic Reynolds Number: $R_m = \frac{\mu_0 vL}{\eta} = \frac{vL}{\sigma} \Rightarrow \frac{convection}{diffusion} = \frac{\mu_0 \left[(\mathbf{v} \cdot \nabla) \mathbf{B} - (\mathbf{B} \cdot \nabla) \mathbf{v} \right]}{\eta \nabla^2 \mathbf{B}}$

- $R_m \ll 1$ magnetic field growth slowed
- $R_m \gg 1$ magnetic field growth coupled to velocity
- Ratio of kinetic to magnetic energy: β

$$B = \frac{2\mu_0 \rho v^2}{B_0^2} \Rightarrow \frac{\text{Kinetic Energy}}{\text{Magnetic Energy}}$$

- $\beta \gg 1$ kinetic energy dominates motion
- $\beta \ll 1$ magnetic energy "
- Interaction Parameter: $N = \frac{\sigma B^2 l}{\rho u} \Rightarrow \frac{\text{Lorentz Force}}{\text{inertial Force}}$
 - $N \ll 1$ inertial forces dominate formation of coherent structures
 - $N \gg 1$ Lorentz forces
- Hartmann Number: $H = \frac{B_0 L}{\sqrt{\rho_0 \eta v}} \Rightarrow \frac{\text{Lorentz Force}}{\text{Viscous Force}}$

 $H \ll 1$ viscous forces dominate boundary layer growth

 $H \gg 1$ Lorentz forces

Note: $H^2 = N \operatorname{Re} = Ch = \operatorname{Chandrasekhar} \#$

MHD LBM Formulation

$$\frac{\partial f_{\alpha}}{\partial t} + \mathbf{v} \cdot \frac{\partial f_{\alpha}}{\partial \mathbf{r}} + \frac{q_{\alpha}}{m_{\alpha}} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \frac{\partial f_{\alpha}}{\partial \mathbf{v}} = \left(\frac{\partial f_{\alpha}}{\partial t}\right)_{coll}$$

Eq for density distribution function using BGK collision operator, neglecting Lorentz force

$$\frac{\partial f_{\alpha}}{\partial t} + \mathbf{c} \cdot \frac{\partial f_{\alpha}}{\partial \mathbf{r}} = -\frac{1}{\tau} \left(f_{\alpha} - f_{\alpha}^{(eq)} \right)$$

$$f_{\alpha} \left(x + e\delta_{t}, t + \delta_{t} \right) - f_{\alpha} \left(x, t \right) = -\frac{1}{\tau} \left[f_{\alpha} \left(x, t \right) - f_{\alpha}^{(eq)} \left(x, t \right) \right]$$
Dellar [2002] equilibrium distribution function used.
$$w_{\alpha} \rho \left(1 + \frac{3}{c^{2}} \mathbf{e}_{\alpha} \cdot \mathbf{v} + \frac{9}{2c^{4}} (\mathbf{e}_{\alpha} \cdot \mathbf{v})^{2} - \frac{3}{2c^{2}} \mathbf{v} \cdot \mathbf{v} \right) + \frac{9}{2c^{2}\mu_{0}} w_{\alpha} \left(\frac{1}{3} |B_{\alpha}|^{2} |\mathbf{e}_{\alpha}|^{2} - (\mathbf{e}_{\alpha} \cdot \mathbf{B}_{\alpha})^{2} \right)$$
(3-D)

Density, velocity, & kinematic viscosity calculated as

$$\rho = \sum_{\alpha=1}^{N} f_{\alpha} \qquad \qquad \rho v_{\alpha} = \sum_{\alpha=1}^{N} e_{\alpha} f_{\alpha} \qquad \qquad v = \frac{\left(\tau_{f} - .5\right)}{3} c^{2} \delta t$$

Magnetic Field LBM Formulation

Magnetic induction eq. modeled using LB analogy because it's a conservative hyperbolic eq. [Dellar 2002]

$$\frac{\partial g_{\beta j}}{\partial t} + \Xi \cdot \nabla g_{\beta j} = -\frac{1}{\tau_g} \left(g_{\beta j} - g_{\beta j}^{(eq)} \right)$$

This recovers magnetic induction eq.

$$\frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot \left(\mathbf{v} \mathbf{B} - \mathbf{B} \mathbf{v} \right) + \nabla \cdot \left(\frac{\eta}{\mu_0} \nabla \mathbf{B} \right) = 0$$

Dellar [2002] used equilibrium distribution function

$$\mathbf{g}_{\beta j}^{(eq)} = w_{\beta} \left[\mathbf{B}_{j} + \frac{4}{c} \left(v_{i} B_{j} - B_{i} v_{j} \right) \right]$$

Magnetic field & magnetic diffusivity calculated as

$$\mathbf{B}_{j} = \sum_{\beta=1}^{M} \mathbf{g}_{\beta j} \qquad \qquad \eta = \frac{\left(\tau_{g} - .5\right)}{4} c^{2} \delta t \quad (3-D)$$

Lattice Structures in MHD-LBM

Q19D3 Lattice Structure

$$f_{\alpha}$$

$$w_{\alpha} = \begin{cases} 1/3, & \alpha = 0\\ 1/18, & \alpha = 1, 2, \dots 6\\ 1/36, & \alpha = 7, 8, \dots 18 \end{cases}$$

Q7D3 Lattice Structure

 $\mathbf{g}_{\beta j}$

$$W_{\beta} = \begin{cases} 1/4, & \beta = 0\\ 1/2, & \beta = 1, 2, \dots 6 \end{cases}$$

Velocity Field B.C.'s

Domain Dimension: 320x180x120

Outlet Dimension: 24x16

A constant uniform velocity field emits from the rectangular outlet of AR=1.5.

Magnetic Field B.C.'s

Domain Dimension: 320x180x120

Outlet Dimension: 24x16

Domain is under influence of a constant external magnetic field, created by a circular current loop around the rectangular outlet.

Uniform Magnetic Field Influence on RJ

Trends correspond to observations in jet casting.

Correct physical trends provides credibility for MHD RJ simulations.

Magnetic Field Effect on Vortices

Small N damps vortices

Large N causes reverse flow

These observations are for vortex generations, not Jet flow vortices. Davidson [2001]

Axis-Switching (B=0)

• Re=150, AR=1.5

Attenuation of Axis-Switching (B ≠ 0, I=375 A) • Re=150. AR=1.5

Pictures are view of the streamwise plane (Y-Z) of the jet flow

Axial Vorticity Contour Plots at 11H

Pictures are view of the streamwise plane (Y-Z) of the jet flow

At first we see attenuation of vorticity, then vortices reverse alignment & strengthen, following trends presented by Davidson [2001].

Vortex Development in Axial Direction

Vorticity Circulation in Axis-Switching

Fluid Circulation during Axis-Switching

Fluid Circulation during prevention of Axis-Switching

Kelvin-Helmholtz instability mode attenuated due to strong axial magnetic field cpt.

Biskamp [2003] demonstrates that parallel magnetic field attenuates this instability.

Conclusions

In RJ, major axis influences directionality of plume structure.

Jet profile elongates in major axis direction when strong axissymmetric magnetic field is applied.

External magnetic field influence on a jet flow causes:

- Attenuation of the velocity field
- Vortex Attenuation and Reversal
- Kelvin-Helmholtz instability is attenuated

These effects lead to prevention of axis-switching and unsteadiness in Rectangular Jets.

References

- Nanotube
 - Sigmund, Bell & Bergstrom [2000]
- 2D, transverse fields, flow control
 - Hunt and Leibovich [1967]; Bobashev, Golovachov & van Wie [2003];
 Nishihara, Bruzzese, Adamovich, Udagawa & Gaitonde [2007]; Moreau [1963]; Moffatt & Toomre [1967]; Macheret, Shneider, & Miles [2002]
- Axis-switching of laminar RJ
 - Yu & Girimaji [2005]