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Lattice-Boltzmann Method (LBM) & Ion Thrusters

 Complement Discrete Simulation Monte-
Carlo (DSMC) models for faster computation
of critical ion thruster parameters

 Use LBM to model plasma flow in thruster

 Compare results with experimental data and
DSMC predictions

 Identify plasma flow characteristics that lead
to thruster component erosion; e.g., grids
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Outline

 Ion thrusters (see Gallimore, 2004)
• Basic physics of operation

• Issues of interest: lifetime/erosion

 Why try LBM?

 LBM & Ion thrusters

 Some results

 Summary, conclusion & future work
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Ion thrusters are the most efficient EP devices at converting input power to thrust and are
used both as primary propulsion and for station-keeping on commercial and scientific

spacecraft.
Key issues include grid erosion and thrust density limitations from space-charge effects.
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Ion thruster concept (Gallimore, 2004)

 Electrons are emitted from discharge
cathode assembly (DCA)

 DCA electrons (Primary) are
accelerated by local sheath to high
voltage (>15 eV)

 Primary electrons create ions via
impact ionization with neutrals

 Ionization process starts with one
Primary and one neutral - results in 2
Maxwellian electrons and one ion

 Ions are attracted to ion optics (Screen
grid) via electric field

 Ions are accelerated through optics
(Screen & Accel grids) - ion beam
neutralized by neutralizer cathode

 Accel grid negative to prevent electron
backstreaming

 Note:  While Maxwellian electrons
outnumber Primaries 10:1, the latter
account for most of the ionization in
the discharge chamber.

Ion Thrusters Basics
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Solar Electric Propulsion — NASA’s Evolutionary
Xenon Thruster  (NEXT) [5-10 yr. deployment time]
-NEXT is the follow-on to NSTAR used on DS1 and
slated for DAWN (2006 launch)
-NEXT represents a 4x improvement in thrust and
power and a 25% increase in Isp (from 3280 to 4100
s) over NSTAR at half the specific mass (from 2.6 to
1.2 kg/kW)

DAWN

Nuclear Electric Propulsion — NASA’s Nuclear
Space Initiative [10-15 yr. deployment time]
Electric Propulsion Proposals in NASA’s 2002 “In-
Space Propulsion Technologies”  NASA Research
Announcement (NRA) for ultra-high-performance
engines (Isp > 6,000 s)

JIMO

HiPEP

90 cm x 40 cm

NEXIS

60 cm

Modern Ion Thrusters
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Ion Thruster Basics
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Ion Thruster Basics

Accel Grid
-300 V

Screen Grid
 ~1170 V

Anode ~1200 V
Ion “Birth” Potential

Potential

Neutralization Plane 
~ 0 V

Xa 2Xa

Equipotentials (simulation)
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Typical Ion Engine Parameters
 Within a few cm of grid, typical ion thruster

& plasma parameters are:
nXe+~ 1012-1010 cm-3 , ne ~ 1012-1010 cm-3 >> nXe >> nXe++ …

 V+ ~ 1075 V at screen grid

 V- ~ -150 V at accelerator grid

 Grid separation ~ 1 mm

 Screen grid opening diameter ~ 2 mm

 Accelerator grid opening diameter ~ 1 mm
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Assumptions of Applicability of LB
 Note local Kn:
 Crawford (2002)

 Kn ~ O(0.1) around optics

 Ion veloc. distrib. Laser-
induced Fluorescence
Velocimetry of Xe II in the
30-cm NSTAR-type Ion
Engine Plume, Smith and
Gallimore (AIAA-2004-
3963)

 Maxwellian radial f(v)
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L
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LBM EP Model

 The model assumes coupling of the velocity
distribution function w/the electrostatics

 Assume linear collision if close to the
continuum limit so that Q = -"r(f - f(eq))

 Adequate for near equilibrium plasma, simple
charge exchange (CEX) collisions or even
assume “Q=0” for collisionless, electrically-
driven plasma
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 Collision:
 Sources:

Computational Procedure

Streaming:

t=t+dt

Calculate physical variables
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Axi-symmetric Cylindrical Coordinates

 In accordance w/thruster geometry

 Use work of Yu, Girimaji & Yu (2004)
where cyl. coord. effects are incorporated
via source terms in LBE to satisfy macro-
level cyl. coord. eqs. (NS)
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Results

 Compare general trends: non-
dimensional

 Compare specific cases
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LBM Ion Thruster Exhaust Stream

Unitless ion #density contours; matches Crawford (2001)
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LBM Ion Thruster Exhaust Stream

Ion velocity field
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LBM Ion Thruster Exhaust Stream

Electrostatic potential
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LBM Models of Ion Thruster Optics
 To look at grid erosion,

we want to zoom in on
a grid segment with
2D/axi-symmetric
models as below

Electrostatic potential contours 
from modeling a slit btwn grids

Electrostatic potential contours 
from Duchemin (2001)
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LBM Ion Thruster Optics

Electrostatic potential
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LBM Models of Ion Thruster Optics
 Zoom in on a optics

segment with 2D/axi-
symmetric models as
below

Electrostatic potential contours 
from modeling a slit btwn grids

Electrostatic potential contours 
from Duchemin (2001)
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Electrostatic potential btwn grids

Electrostatic potential contours 
from Gallimore (2004)

Electrostatic potential contours
from Duchemin (2001)

LBM Models of Ion Thruster Optics
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( 2D )? 2 1J ul 2 004 ?
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LBM Ion Thruster Optics

vion: Vscreen=10V, Vaccel=-10V
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LBM Models of Ion Thruster Optics
Ion # density; screen grid 10V, accelerator grid -10

 Crawford (2001)
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LBM Models of Ion Thruster Optics
Ion # density; screen grid 1075V, accelerator grid -180
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LBM Models of Ion Thruster Optics
Ion velocity field; screen grid 1075V, accelerator grid -180
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Conclusions & Future Work

 LBM does well w/modeling EP

 Next is to try
• other species

• variations in collision operator,
e.g.,pseudo-random collision
frequency as used in DSMC

• Other variations of BE form
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Computational Domain

Screen
grid

Accelerator
grid

Computational
Domain
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Extrapolation Boundary

 Extrapolation boundary condition has been
applied at S1 and S4 in computational domain.

 At S1,
• f(1,j,9) = f(2,j,9)
• f(1,j,2) = f(2,j,2)
• f(1,j,6) = f(2,j,6)

 At S4,
• f(NX,j,8) = f(NX-1,j,8)
• f(NX,j,4) = f(NX-1,j,4)
• f(NX,j,7) = f(NX-1,j,7)
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Free stream boundary

 Free stream boundary condition has been applied at S2 and
S3 in the computational domain.

 At S2,
• f(1,j,9) = 0.0
• f(1,j,2) = 0.0
• f(1,j,6) = 0.0

 At S3,
• f(NX,j,8) = 0.0
• f(NX,j,4) = 0.0
• f(NX,j,7) = 0.0
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Symmetric Boundary

Symmetric boundary condition has been
applied at S5 on the computational
domain.

At S5,
• f(i,1,7) = f(i,2,8)
• f(i,1,3) = f(i,2,5)
• f(i,1,6) = f(i,2,9)
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