Spectral Element Method

Background and Details A compilation by Dr. Jacques C. Richard JC-Richard@CSU.edu

Spectral Element Method

- Like Finite Element Method
- But with Spectral Functions
- Infinitely differentiable global functions of SEM vs. local character of FEM functions.
- Adaptive mesh
- Polynomials of high and differing degrees
- Non-conforming spectral element method presented here is as described by Fischer; Patera; van de Vosse and Minev; Bernadi and Maday, etc.

SEM Discretization

- Polynomial approximation for velocity two degrees higher than that for pressure
- Avoids spurious pressure modes.
- Like solving eqs. on a staggered grid where **u** and *p* are solved on different grids but coupled (e.g., via interpolation)

SEM Approach

- Temporal discretization of Navier-Stokes eqs. based on high-order operator splitting methods
	- Splitting problem into convection & diffusion
	- Some combination of integration schemes for convection operator or for time-dependent terms that may be high order
	- With some degree of polynomial for SEM discretization of diffusion terms giving high-order in space
- Coupled w/SEM spatial discretization to yield sequence of symmetric positive definite (SPD) sub-problems to be solved at each time step.

Current Models

- SEM for unsteady incompressible viscous flow
- Navier-Stokes eqs.

$$
\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \bullet \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}
$$

$$
\nabla \bullet \mathbf{u} = 0
$$

Initial and Boundary Conditions

- Ic: $u(x,0)=u^{0}(x)$
- bc's: $\mathbf{u} = \mathbf{u}$, on $\partial \Omega$, $\nabla u_i \bullet \hat{\mathbf{u}}_{\mathbf{n}} = 0$ on $\partial \Omega_o$ or $\nabla u_i \bullet \hat{\mathbf{n}} = 0$
	- $-\hat{\mathbf{u}}_n$ is an outward pointing normal on boundary
	- Subscripts *v* and *o* denote parts of boundary w/either "velocity" or "outflow" bc's

SEM Algorithm

• The convective term is expressed as a material derivative, which is discretized using a stable mth order backwarddifference scheme (*m*=2 or 3)

• For
$$
m=2
$$
,
$$
\frac{\tilde{\mathbf{u}}^{n-2} - 4\tilde{\mathbf{u}}^{n-1} + 3\tilde{\mathbf{u}}^n}{2\Delta t} = S(\tilde{\mathbf{u}})
$$

• where RHS represents a linear symmetric Stokes problem to be solved implicitly and $\tilde{\mathbf{u}}^{n-2}$ is a velocity field that is computed as the explicit solution to a pure convection problem over time interval $[t^{n-2}, t^n]$.

SEM Algorithm

- Sub-integration of convection term permits values of Δt corresponding to convective Courant numbers CFL = $max_{\Omega} c\Delta t/\Delta r = 1-5$
- Significantly reduces number of (computationally expensive) Stokes solves

Operator Splitting

• Splitting leads to unsteady Stokes problem to be solved at each time step in Ω:

$$
\mathcal{H} \mathbf{u}^n + \nabla p^n = \mathbf{f}^n
$$

$$
\nabla \bullet \mathbf{u}^n = 0
$$

where $H = (-\nabla^2 / \text{Re} + c_0 / \Delta t)$ is the Helmholtz operator,

- $c₀$ is an order unity constant
- **f***ⁿ* incorporates treatment of non-linear terms

SEM Algorithm

• Stokes discretization (w/o *n*) based on following variational form: Find (\mathbf{u}, p) in $X \times Y$ such that

$$
\frac{1}{\text{Re}}(\nabla \mathbf{u}, \nabla \mathbf{v}) + \frac{3}{2\Delta t}(\mathbf{u}, \mathbf{v}) - (p, \nabla \bullet \mathbf{v}) = (\mathbf{f}, \mathbf{v})
$$

($\nabla \bullet \mathbf{u}, q$) = 0

- \forall (**v**,q) \in $X \times Y$, I.e., as weights in $X \times Y$.
- Inner products: $(l,g)=\int_{\Omega} l(\mathbf{x}) g(\mathbf{x}) d \mathbf{x}$

Proper Subspaces

• The proper subspaces for **u**, **v**, and *p, q* are:

X={**v** : $v_i \in H^1(0, 0)$, *i*=1*, ...,d,* **v** = 0 on $\partial \Omega_v$ }, *d*=2 if 2D... $Y=L^2(\Omega)$

- $-L^2$ is the space of square integrable functions on Ω ; $\int_{\Omega} v^2 dV = \int_{\Omega} v^2 d^3r$
- $-H¹₀$ is the space of functions in $L²$ that vanish on the boundary $\binom{0}{0}$ and whose first derivative $\binom{1}{1}$ is also in L^2 ; $\int_{\Omega} (\partial v / \partial r)^2 dV = \int_{\Omega} (\partial v / \partial r)^2 d^3r$
- Spatial discretization proceeds by restricting **u**, **v**, and *p, q* to compatible finite-dimensional velocity and pressure subspaces: $X^N \subset X$ and $Y^N \subset Y$

SEM Algorithm

- Stokes discretization is then written as: Find (\mathbf{u}, p) in $X^N \times Y^N$ such that 1 $\frac{1}{\text{Re}}(\nabla \mathbf{u}, \nabla \mathbf{v})_{GL} +$ 3 $2\Delta t$ $({\bf u},{\bf v})_{GL} - (p,\nabla \cdot {\bf v})_G = ({\bf f},{\bf v})_{GL}$ $(\nabla \bullet \mathbf{u}, q)_G = 0$
- \forall (**v**,q) \in $X^N \times Y^N$, I.e., as weights in $X^N \times Y^N$.
- Subscripts $(.,.)_{GL}$ and $(.,.)_{G}$ refer to Gauss-Lobatto-Legendre (*GL*) and Gauss-Legendre (*G*) quadrature

Sub-Domains

- In SEM, bases for X^N and Y^N are defined by tessellating domain into *K* non-overlapping sub-domains $\Omega = \bigcup_{k=1}^K \Omega^k$
- Within each sub-domain, functions are represented in terms of tensor-product polynomials on a reference sub-domain, e.g., $\Omega_{\text{ref}} := [-1,1]^d$.

Mapping Sub-Domain to "Reference Sub-Domain"

- Each Ω^k is image of ref. sub-domain under mapping: \mathbf{x}^k (\mathbf{r}) $\in \Omega^k \Rightarrow \mathbf{r} \in \Omega_{\text{ref}}$
- With well-defined inverse:

 \mathbf{r}^k (**x**) $\in \Omega_{\text{ref}} \Rightarrow \mathbf{x} \in \Omega^k$

- I.e., each sub-domain is a deformed quadrilateral in **R**² (2D) or deformed parallelepiped in **R**3 (3D)
- Intersection of closure of any two sub-domains is void, a vertex, an entire edge (2D), or an entire face (3D)

Conforming/Non-Conforming SEM

- For conforming case $\Gamma^{kl} = \Omega^k \cap \Omega^l$ for $k \neq l$ is void, a single vertex, or an entire edge.
- For non-conforming case, Γ^{kl} may be a subset of either ∂Ω*^k*or ∂Ω*^l* but must coincide with an entire edge of the elements.
- Function continuity, $\mathbf{u} \in H^1(\Omega)$, enforced by matching Lagrangian basis functions on subdomain interfaces.
- The velocity space is thus conforming, even for the nonconforming meshes (by 1st bullet)

Handling Pressure

• To avoid spurious pressure modes, Maday, Patera and Rønquist, and, Bernardi and Maday suggest different approximation spaces for velocity and pressure:

 $X^N = X \cap \mathbf{P}_{N,K}(\Omega)$ $Y^N = Y \cap \mathbf{P}_{N-2,K}(\Omega)$

where

 $\mathbf{P}_{N,K}(\Omega) = \{ v(\mathbf{x}^k(\mathbf{r})) | \rho \in \mathbf{P}_N(r_1) \otimes ... \otimes \mathbf{P}_N(r_d), k=1,..,K \}$ and $P_N(r)$ is space of all polynomials of degree $\leq N$

Space Dimensions

- Dimension of Y^N is $K(N-1)^d$ since continuity is enforced for functions in *YN*
- Dimension of X^N is $dK(N+1)^d$ because
	- $-$ functions in X^N must be continuous across subdomain interfaces
	- Dirichlet bc's on ∂Ω*^v*

Function Spaces

- Velocity Space: Basis chosen for $P_N(r)$ is set of Lagrangian interpolants on Gauss-Lobatto-Legendre (GL) quadrature pts. in ref. domain: $\xi_i \in$ $[-1,1], i=0,...,N$
- Pressure Space: Basis chosen for $P_{N-2}(r)$ is set of Lagrangian interpolants on Gauss-Legendre (G) quadrature pts. in ref. domain: $\eta_i \in \{-1,1\}$, *i=*1*,…,N*-1
- Basis for velocity is continuous across sub-domain interfaces but basis for pressure is not

SEM Algorithm Subspaces

- Could also write $X_N := [Z_N H^1(\Omega^k)]^d$ and $Y_N := Z_{N-2}$ where $Z_N := \{ v \in L^2(\Omega) \mid v_\Omega \in \mathbf{P}_N(\Omega^k) \}$
	- I.e., *v* belongs to space of functions in *L2*
	- $v_{\text{I}\Omega}^k$ belongs to space of polynomials of degree $\leq N$ in k^{th} element's size subspace Ω^k
	- And these both define the space Z_N
- $P_N(\Omega^k)$ is a space of functions for k^{th} element Ω^k whose image is a tensor-product polynomial of degree $\leq N$ in a ref. solution domain $\Omega_{ref} := [-1,1]^d$.

SEM Algorithm Quadrature

- Subscripts $(.,.)_{GL}$ and $(.,.)_{G}$ referred to Gauss-Lobatto-Legendre (*GL*) and Gauss-Legendre (*G*) quadrature which are:
- $\int_{-1}^{1} f(x)dx = w_1 f(-1) + w_N f(1) + \sum_{i}^{N} w_i f(x_i)$

Gauss-Lobatto-Legendre (*GL*) Quadrature

- $\int_{-1}^{1} f(x)dx = w_1 f(-1) + w_N f(1) + \sum_{i}^{n} w_i f(x_i)$ where $w_i^{GL} =$ 2*N* $(1 - x_i^2)L_{N-1}^{\prime}(x_i)L_N^{\prime}(x_i)$ = 2 $N(N-1)[L_{N-1}(x_i)]^2$
- L_n are the *Legendre* polynomials,
- Gauss-Lobatto points are zeroes of L'_{N} or $(1-x^2)$ L'_{N} & at endpoints $(-1,1)$

$$
w_{1,N}^{GL} = \frac{2}{N(N-1)}
$$

Gauss-Lobatto-Legendre (*GL*) Quadrature

• w/error

$$
E = \frac{N(N-1)^3 2^{2N-1} [(N-2)!]^4}{(2N-1) [(2N-2)!]^3} f^{(2N-2)}(\xi)
$$

- for $\xi \in (-1,1)$
- The weights may also be written as $w_i^{GL} = \rho_i =$ 2 $N(N + 1)$ 1 $[L_{N}(x_{i})]^{2}$

Gauss-Legendre (*G*) Quadrature

- Same as Gauss-Legendre-Lobatto
- But w/o endpoints (not used for prescribed function values at boundaries)
- Weights are

$$
w_i^G = \sigma_i = \frac{2}{(1 - x_i^2)[L_{N+1}(x_i)]^2}
$$

- Where L_N are the *Legendre* polynomials,
- Gauss points (interior points) are zeroes of L_{N+1}

Interpolation Polynomials

• Basis functions are Legendre-Gauss-Lobatto-Lagrange interpolation polynomials:

$$
h_i = \frac{-1}{N(N+1)L_N(x_i)} \frac{(1-x^2)L'_N(x)}{x-x_i}
$$

2D Affine Mappings

- In $f(\mathbf{x}^k(\mathbf{r}))$, $\mathbf{r} \in \Omega_{\text{ref}}$, define: **x**^{*k*}(**r**) = **x**^{*k*}(r_1 , r_2) = (x ^{*k*}_{0,1} + *L*^{*k*}₁ r_1 /2, x ^{*k*}_{0,2} + *L*^{*k*}₂ r_2 /2) where $x_{0,i}^k$ and L_j^k represent local translation and dilation constants
- Evaluation of elemental integrals for general curvilinear coordinates is facilitated by these mappings of physical (**x**) system into local (**r**) system

2D Affine Mappings

 $\partial r_\alpha^{}$

- Derivatives in elemental integrals can be expressed in local (**r**) coordinates w/Jacobian transformation (in indicial notation): ∂ $= J_{i\alpha}^{-1}$ $_{-1}$ ∂
- With Jacobian: $J =$ x_{1,r_1} x_{2,r_1} x_{1,r_2} x_{2,r_2} ! \Box $\overline{}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $\overline{}$ &
- Jacobian determinant: $|J| = x_{1,r_1} x_{2,r_2} x_{2,r_1} x_{1,r_2}$ $\overline{1}$ 1 $2,1/2$ $2,1/1$

 $\partial \! x_i^{}$

• And inverse Jacobian: $J^{-1} =$ 1 *J* x_{2,r_2} $-x_{2,r_1}$ $-x_{1,r_2}$ x_{1,r_1} L \lfloor $\overline{ }$ \mathcal{L} $\overline{}$ **Service State State State State State**

2D Affine Mappings

- Using $\mathbf{x}^k(r_1, r_2) = (x^k_{0,1} + L^k_1 r_1/2, x^k_{0,2} + L^k_2 r_2/2)$
- The Jacobian is: $J =$ x_{1,r_1} x_{2,r_1} x_{1,r_2} x_{2,r_2} $\overline{}$ \lfloor $\overline{}$ $\overline{}$ $\overline{}$ \vert $=$ 1 2 L_1^k 0 0 L_2^k |
|
. \lfloor $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$

Service State State State State State

 $L_1^k L_2^k$

4

- Its determinant is: $|J| = x_{1,r_1} x_{2,r_2} x_{2,r_1} x_{1,r_2} =$
- And inverse Jacobian is: $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \begin{array}{c} \end{array} \end{array} \end{array}$ $J^{-1} =$ 1 *J* x_{2,r_2} $-x_{2,r_1}$ $-x_{1,r_2}$ x_{1,r_1} $\overline{}$ \lfloor $\overline{}$ $\overline{}$ $\overline{\mathsf{a}}$ \vert $=$ 2 L_1^k $\frac{1}{k}$ 0 $0 \frac{2}{\tau^k}$ L_2^k \mathbf{r} $\overline{}$ $\overline{}$ \$ $\frac{1}{2}$ \overline{a} $\overline{}$ $\overline{}$ ' ' '

Elemental Integrals

• Using the affine mappings, the integrals can be evaluated as (e.g.):

 $(v_i, f_i)^k = \int_{-1}^1 \int_{-1}^1 v^k_i f^k_i |J|^k dr_1 dr_2$

• Numerical integration rules for element Ω_k with *GL* is

 $\int_{\Omega_k} g \ dV = \rho_m \rho_n \ |J^k(\ \xi_m \, , \ \xi_n \,) \ | \ g^k(\ \xi_m \, , \ \xi_n \,)$ for all $g^k \in C^0(\Omega_k)$

Quadrature Implementation

- Lagrangian bases makes quadrature implementation convenient
- Let f^k (**r**) := f (**x**^{*k*} (**r**)), **r** $\in \Omega_{ref}$
- In \mathbb{R}^2 (\mathbb{R}^3 follows readily from tensor product form): $(f,g)_{GL} = \sum_{i}^{\infty} \sum_{j}^{\infty} f^{k}(\xi_{i}, \xi_{j})$ k *i*=0 *j*=0 *N* \sum *N* $\sum \sum f^{k}(\boldsymbol{\xi}_{i},\boldsymbol{\xi}_{j})\cdot g^{k}(\boldsymbol{\xi}_{i},\boldsymbol{\xi}_{j})\cdot\left|J^{k}(\boldsymbol{\xi}_{i},\boldsymbol{\xi}_{j})\right|\cdot\rho_{i}\rho_{j}$

$$
(f,g)_G = \sum_k \sum_{i=1}^{N-1} \sum_{j=1}^{N-1} f^k(\eta_i, \eta_j) \cdot g^k(\eta_i, \eta_j) \cdot \left| J^k(\eta_i, \eta_j) \right| \cdot \sigma_i \sigma_j
$$

where J^k (**r**) is Jacobian from transformation \mathbf{x}^k (**r**)

Polynomial Representation

- Every scalar in $P_{NK}(\Omega)$ is represented in the form $f(\mathbf{x})|_{\Omega}^{k} = \sum_{i=0}^{N} \sum_{j=0}^{N} f_{ij}^{k} h_{i}(r_{1}) h_{j}(r_{2})$
- where $h_i(r) \in P_N(r)$ is the Lagrange polynomial satisfying $h_i(\xi_j) = \delta_{ij}$
- For each sub-domain, a natural ordering, f^k_{ij} , $i, j \in$ $\{0,...,N\}^2$ is associated w/vector f^k
- And, in turn, natural ordering, f^k_{ij} , $k \in \{0, ..., K\}^2$ is associated w/the $K(N+1)^2 + 1$ vector f_L

• Inserting SEM basis

 $f(\mathbf{x}^k (\mathbf{r}))|_{\Omega}^k = \sum_{i=0}^N \sum_{j=0}^N f_{ij}^k h_i(r_1) h_j(r_2)$ into

$$
\frac{1}{\text{Re}}(\nabla \mathbf{u}, \nabla \mathbf{v}) + \frac{3}{2\Delta t}(\mathbf{u}, \mathbf{v}) - (p, \nabla \bullet \mathbf{v}) = (\mathbf{f}, \mathbf{v})
$$

$$
(\nabla \bullet \mathbf{u}, q) = 0
$$

yields $\mathcal{H} \mathbf{u}^n - D^T p^n = B \mathbf{f}^n$, $D \mathbf{u}^n = 0$

where

 $\mathcal{H} = A/Re + B/\Delta t =$ discrete equivalent of Helmholtz operator;

 \checkmark *A* = discrete Laplacian,

 \checkmark *B* = mass matrix associated with the velocity mesh (diagonal); \checkmark *D* = discrete divergence operator

• A pressure correction step is then needed:

$$
E \, \delta \underline{p} = -D \, \underline{\mathbf{u}}'
$$

$$
\underline{\mathbf{u}}^n = \underline{\mathbf{u}}^n + \Delta t \, B^{-1} \, D^T \, \delta \underline{p} + O(\Delta t^2)
$$

where $E = \Delta t D B^{-1} D^{T}$ is the Stokes Schur complement governing the pressure in the absence of the viscous term

- Define unassembled mass matrix to be block-diagonal matrix $B_L \equiv diag(B^k)$
- Where each local mass matrix is expressed as tensor-product of 1D operators:

$$
B^k = \left(\frac{L_1^k L_2^k}{4}\right) B^* \otimes B^*
$$

• Where B^* = $diag(\rho_i)$, *i*=0,...N

• Express

$$
(f,g)_{GL} = \sum_{k} \sum_{i=0}^{N} \sum_{j=0}^{N} f^{k}(\xi_i, \xi_j) \cdot g^{k}(\xi_i, \xi_j) \cdot \left| J^{k}(\xi_i, \xi_j) \right| \cdot \rho_i \rho_j
$$

in terms of mass matrices as

 $\forall f,g \in \mathbf{P}_{N,K}(\Omega)$ $(f,g)_{GL} = \sum_{k} (\not{f}^{k})^{T} B^{k} g^{k} = f_{L}^{T} B_{L} g_{L}$

- Similarly, for bilinear form $(\nabla f, \nabla g)$: $\forall f,g \in \mathbf{P}_{N,K}(\Omega)$ $(f,g)_{GL} = \sum_{k} (\mathbf{f}^{k})^{T} A^{k} g^{k} = f_{L}^{T} A_{L} g_{L}$
- Here $A^L \equiv diag(A^k)$ is the unassembled stiffness matrix and A^k is the local stiffness matrix: $A^k =$ L_2^k L_1^k $\big($ \setminus I \overline{a} \overline{y} $B^* \otimes A^* +$ L_1^k L_2^k $\big($ \setminus $\overline{}$ \overline{a} \overline{y} $A^*\otimes B^*$
- *A** is a 1D stiffness matrix defined in terms of spectral differentiation matrix *D**:

$$
A^*_{ij} = \frac{\sum_{j}^{N} I_{j}}{dh_{j}} = 0 \frac{D^*_{li} \rho_l D^*_{lj}}{dr} , \quad i, j \in \{0, ..., N\}^2
$$

Computing *Ak*

- Whereas A^* is full, A^k is sparse due to using diagonal mass matrix *B**
- Computational stencil of A^k is a cross, much like finite difference stencil
- For deformed sub-domains, A^k is generally full with $(N+1)^d$ non-zero entries
- Action of A^k upon a vector can be efficiently computed in $O(N^{d+1})$ operations if tensor-product form is retained in favor of its explicit formation

Computing *f*

- Local sub-domain operators $(A_L$ and B_L) incorporated into global $n_v \times n_v$ system matrices through "direct stiffness" summation assembly procedure which maps vectors from their local representation, f_I to global form, f
- I.e., let *Q* be global-to-local mapping operator that transfers basis coefs. from global to local ordering: $f_I = Qf$

Computing *f*

- Local sub-domain operators $(A_L$ and B_L) incorporated into global $n_v \times n_v$ system matrices by defining index set $q_{ijk} \in \{1, \ldots, n_{\nu}\}\$ which maps vectors from their local representation, f_L to global form, *f*
- Index set has repeated entries for any node (*i, j, k*) that is physically coincident w/another (*i', j', k'*),

• I.e.,
$$
q_{ijk} = q_{i'j'k'}
$$
 iff $\mathbf{x}^k (r_i, r_j) = \mathbf{x}^{k'} (r_i, r_j)$
or $\mathbf{x}^k_{ij} = \mathbf{x}^{k'}_{i'j'} \implies u^k_{ij} = u^{k'}_{i'j'}$

Computing Index Maps

- Index map can be represented in matrix form as prolongation operator *Q* which maps from set of global indices to local index set
- *Q* is a $K(N+1)^d \times n_v$, is a Boolean matrix w/a single "1" in each row and zeroes elsewhere
- If $m=(k-1) \cdot (N+1)^2 + j \cdot (N+1) + i + 1$ is position of f_{ij}^k in f_L and $q = q_{ijk}$ is the corresponding global index
- Then *m*th column of Q^T is unit vector \hat{e}_q , I.e., the q^{th} column of the identity matrix

Computing Index Maps

- Application of *Q* to a vector implies distribution whereas application of Q^T to a vector implies summation, or gathering of information
- Q^T is sometimes referred to as the "direct-stiffnesssummation" operator

• A direct consequence of unique mapping property q_{ijk} = $q_{i'j'k'}$, iff $\mathbf{x}^k(r_i, r_j) = \mathbf{x}^{k'}(r_i, r_j)$ and use of Lagrangian basis is that

> $\forall f,g \in \mathbf{P}_{N,K}(\Omega) \cap H^1,$ $(\nabla f, \nabla g)_{GL} = f^T Q^T A_L Q g$

- Define $Q^T A_L Q$ as Neumann Laplacian operator it has a null-space of dimension unity corresponding to constant mode
- Define associated Dirichlet operator as $M^T Q^T A_L Q M$ where *M* is the diagonal mask matrix having ones on the diagonal at points q_{ijk} : $\mathbf{x}^k_{ij} \in \Omega \cup \partial \Omega_0$ and zeroes elsewhere

• With operators *Q* and *M* the following problems are equivalent:

For $f \in \mathbf{P}_{N,K}(\Omega)$

Find $u \in X^N$ ⁰ such that $(\nabla v, \nabla u)_{GL} = (v, f)_{GL}$, $\forall v \in X^N$ ⁰ Find $u \in R(M)$ such that $v^T M^T Q^T A_L Q M u = M Q^T B_L f_L$, $\forall v \in R(M)$

- Here $R()$ is the range of argument and f_L is the vector of nodal values of $f(\mathbf{x})$
- Direct stiffness-summation operator ensures that solution will lie in H^1 while mask *M* enforces homogeneous Dirichlet bc: $u=0$ on $\partial\Omega_{v}$

Laplacian and Mass Matrices

• Define discrete Laplacian and mass matrices as:

> $A = M Q^T A_L Q M$ $B = M Q^T B$, Q M

- Both treated as invertible and SPD
- But this is not strictly true due to null space associated w/boundaries (**u**=0 bc on some boundaries)

Stokes Operators

• Using contribution to from single element in **R**2 is $(f,g)_G = \sum \sum f^k(\eta_i, \eta_j) \cdot g^k(\eta_i, \eta_j) \cdot \left| J^k(\eta_i, \eta_j) \right| \cdot \sigma_i \sigma_j$ k *i*=1 *j*=1 *N*-1*N*-1 $\ddot{}$ $(q,\nabla \cdot \mathbf{u})_G = \sum q,$ $\partial u_{_l}$ $\partial\! x^{}_{l}$ \int \setminus $\overline{}$ **)** $\overline{}$) $l=1$ $\left(\begin{array}{cc}$ $O\mathcal{N} & \sqrt{G} \\ & O\mathcal{N} & \sqrt{G} \\ & & \sqrt{G} & \sqrt{G} \\ & & & \sqrt{G} & \sqrt{G} \\ & & & & \sqrt{G} & \sqrt{G} \\ & & & & & \sqrt{G} & \sqrt{G} \\ & & & & & & \sqrt{G} & \sqrt{G} \\ & & & & & & & \sqrt{G} & \sqrt{G} \\ & & & & & & & & \sqrt{G} & \sqrt{G} \\ & & & & & & & & & \sqrt{G} & \sqrt{G} \\ & & & & & & & & & & \sqrt{G} & \sqrt{G} \\ & & & & & & & & & & \$ *d* \sum $q^{k}\big(\pmb{\eta}_{i},\pmb{\eta}_{j}\big)$ *j*=1 *i*=1 *l*=1 $N-1$ \sum $N-1$ \sum *d* $\sum \sum Q^k \big(\eta_i, \eta_j\big) \cdot$ ∂u_l^k $\partial\!x^{}_{l}$ $\left(\boldsymbol{\eta}_{i}, \boldsymbol{\eta}_{j} \right) \cdot \left| J^{k} \! \left(\boldsymbol{\eta}_{i}, \boldsymbol{\eta}_{j} \right) \right| \cdot \boldsymbol{\sigma}_{i} \boldsymbol{\sigma}_{j}$

Stokes Operators

• Contribution from *q* represented by Lagrangian interpolants on Gauss points:

$$
q^k\left(\eta_i, \eta_j\right) = q^k_{ij}
$$

• Derivative of velocity must be interpolated giving rise to matrix form $(q,\nabla \cdot \mathbf{u})_G = \sum (q^k)$ *T* $\left(D_1^k u_1^k + D_2^k u_2^k \right)$ $k=1$ *K* \sum

Stokes Operators

• For affine mappings case, local derivative matrices are define as

$$
D_1^k = \left(\frac{L_2^k}{2}\right)I^* \otimes D^* \qquad D_2^k = \left(\frac{L_1^k}{2}\right)D^* \otimes I^*
$$

where $I^*_{ij} = \sigma_i h_j(\eta_i)$ is the 1D interpolation matrix mapping from Gauss-Lobatto points to Gauss points

• and the weighted 1D differentiation matrix interpolated onto the Gauss points is $D_{ij}^* = \sigma_i$ *dh ^j dr*

 $r = \eta_i$

Stokes Problem in Matrix Form

- Let $D_i = D_{L,i} Q M$, $i=1,..., d$ with $D_{L,i} \equiv diag(D^k_i)$
- In **R**² , matrix form of Stokes problem is *H* $-D_1^T$ $H \t-D_2^T$ $-D_1$ $-D_2$ 0 \vert \lfloor $\overline{}$ $\overline{}$ \vert . $\overline{}$ $\overline{}$ ' ' ' \underline{u}_1 $u₂$ </u> *p* \int $\bm{\mathcal{K}}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$, = \int_{-1} $\frac{f}{2}$ *f p* (\setminus * * $\overline{}$ $\overline{)}$,