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Spectral Element Method

Like Finite Element Method
But with Spectral Functions

Infinitely differentiable global functions of SEM
vs. local character of FEM functions.

Adaptive mesh
Polynomials of high and differing degrees

Non-conforming spectral element method
presented here 1s as described by Fischer; Patera;
van de Vosse and Minev; Bernadi and Maday, etc.



SEM Discretization

* Polynomial approximation for velocity two
degrees higher than that for pressure

* Avoids spurious pressure modes.

* Like solving egs. on a staggered grid where u
and p are solved on different grids but coupled
(e.g., via interpolation)



SEM Approach

 Temporal discretization of Navier-Stokes eqs. based on
high-order operator splitting methods

— Splitting problem into convection & diffusion

— Some combination of 1ntegration schemes for
convection operator or for time-dependent terms that
may be high order

— With some degree of polynomial for SEM
discretization of diffusion terms giving high-order in
space

* Coupled w/SEM spatial discretization to yield sequence
of symmetric positive definite (SPD) sub-problems to be
solved at each time step.



Current Models

e SEM for unsteady incompressible viscous flow

e Navier-Stokes egs.

&—u+u0Vu:—Vp+LV2u
ot Re

Veu=0



Initial and Boundary Conditions

e Ic: u(x,0)=u’(x)
* bc’siu=u,on o0,
Vu.e 1, =0 on 92, or Vu,en=0
— U, 1s an outward pointing normal on boundary

— Subscripts v and o denote parts of boundary
w/either “velocity” or “outflow” bc’s



SEM Algorithm

 The convective term 1s expressed as a material derivative,
which is discretized using a stable m™ order backward-
difference scheme (m=2 or 3)

e Form=2, 4" *—4a""'+3d" .
= S(u)
2At

 where RHS represents a linear symmetric Stokes problem
to be solved implicitly and "2 is a velocity field that is
computed as the explicit solution to a pure convection
problem over time interval [£2,¢"].




SEM Algorithm

Sub-integration of convection term permits

values of Az corresponding to convective
Courant numbers CFL = max ocAt/Ar = 1-5

Significantly reduces number of
(computationally expensive) Stokes solves



Operator Splitting

e Splitting leads to unsteady Stokes problem to be
solved at each time step in €2:

Hu'+Vp'=1{"

Veu" =0

where %= (- V?/Re + ¢,/ At ) is the Helmholtz
operator,

Co 18 an order unity constant

" incorporates treatment of non-linear terms



SEM Algorithm

« Stokes discretization (w/o n) based on following
variational form: Find (u, p) in X X Y such that

—(VuVV)+—(uv) (p,Vev)=(f,v)
Re

(V°u,q)=0

e V(v,q) € XXY,le., as weights in X X Y.
e Inner products: (,2)=[q I(X) g(X) d X



Proper Subspaces

* The proper subspaces for u, v, and p, g are:
X={v: v.€ H'\(Q),i=1,...d v=0on an}, d=2 11 2D...
Y= L%
— L? is the space of square integrable functions on €;
Jor2dV = | 2 d3r
— H', is the space of functions in L? that vanish on the
boundary (,,) and whose first derivative (1) is also in L?;

Jo(0v/or)2dV = | (6v/dr)2d 3r
e Spatial discretization proceeds by restricting u, v,
and p, g to compatible finite-dimensional velocity
and pressure subspaces: XY c Xand Y¥Yc Y



SEM Algorithm

e Stokes discretization 1s then written as:

Find (u, p) in XV X YV such that
1 3
R_€(Vu’VV)GL + ZAI (u9 V)GL o (pav ¢ V)G — (fa V)GL

(V ¢ u9Q)G = O

e V (v,q) € XNx YV le., as weights in X" x YV,

* Subscripts (.,.);; and (.,.); refer to Gauss-
[Lobatto-LLegendre (GL) and Gauss-Legendre (G)
quadrature




Sub-Domains

e In SEM, bases for X" and Y are defined by
tessellating domain into K non-overlapping

sub-domains Q = UK, _ QF

e Within eac]

n sub-domain, functions are

represented 1n terms of tensor-product

polynomla
ref _[ 1

s on a reference sub-domain, e.g.,

1]4.



Mapping Sub-Domain to

“Reterence Sub-Domain”™
Each QF is image of ref. sub-domain under
mapping: X*(r)e Q*=re Q .
With well-defined inverse:
r (x)e Q  =>xe QF

I.e., each sub-domain 1s a deformed quadrilateral in
R? (2D) or deformed parallelepiped in R? (3D)

Intersection of closure of any two sub-domains 1s

vold, a vertex, an entire edge (2D), or an entire
face (3D)



Conforming/Non-Conforming
SEM

For conforming case T'* = Q¥ Q! for k#l is
void, a single vertex, or an entire edge.

For non-conforming case, I'¥ may be a subset of
either 0Q* or Q! but must coincide with an
entire edge of the elements.

Function continuity, u € H/,(Q), enforced by
matching Lagrangian basis functions on sub-
domain interfaces.

The velocity space 1s thus conforming, even for
the nonconforming meshes (by 1st bullet)



Handling Pressure

* To avoid spurious pressure modes, Maday, Patera
and Rgnquist, and, Bernardi and Maday suggest
different approximation spaces for velocity and
pressure:

XN =X NPy Q)
YN=Y NPy, (L)
where
P, (Q)={v(x*(r ) eP\(r) ®. .0 P\r,, k=1,..K }

and P,(r) 1s space of all polynomials of degree<N



Space Dimensions

« Dimension of YV is K(N-1)“since continuity
is enforced for functions in YV
e Dimension of X" is dK(N+1)? because

— functions in X» must be continuous across sub-
domain interfaces

— Dirichlet be’s on 092



Function Spaces

e Velocity Space: Basis chosen for P,(r) 1s set of
Lagrangian interpolants on Gauss-Lobatto-
Legendre (GL) quadrature pts. in ref. domain: & e

-1,1],:=0,..,N

* Pressure Space: Basis chosen for P, ,(r) 1s set of
Lagrangian interpolants on Gauss-Legendre (G)
quadrature pts. in ref. domain: n,e |-1,1],
i=1,...,N-1

e Basis for velocity 1s continuous across sub-domain
interfaces but basis for pressure 1s not




SEM Algorithm Subspaces

e Could also write X,:=[ZH',( X¥)]%and Y, N-=£N2
where Z, :={ v € L(Q) v, € PN(Qk) h

— Le., v belongs to space of functions in L?

— vf belongs to space of polynomials of degree < N in £ element’s size sub-
space QF
— And these both define the space Z,

e P, (QY) is a space of functions for k™ element Q*
whose 1mage 1s a tensor-product polynomial of
degree <N in a ref. solution domain Q_ :=[—1,1]“.



SEM Algorithm Quadrature

* Subscripts (.,.);; and (.,.) refterred to Gauss-
[Lobatto-LLegendre (GL) and Gauss-Legendre (G)
quadrature which are:

o JLf)dx=wf Drwyf (D+ZNw, f (x)




Gauss-Lobatto-Legendre (GL)

Quadrature
o JLfix)dx=w, f (-D+wyf (D+Z"w,f (x;) where
6L 2N 2

N T =D)L, ()L(x)  NN-DIL, (x)P

e [ are the Legendre polynomials,

» Gauss-Lobatto points are zeroes of L’y or (1-x?)
L’ & at endpoints (-1,1)

o 2
N(N —1)

Win



Gauss-Lobatto-Legendre (GL)
Quadrature

e w/error
N(N -1 2" [(N-2)!T*

E =
2N -D[2N -7’

AR

o for ce (-1,1)

* The weights may also be written as
2 1

N(N+1) [L,(x)]’

GL
W, =p, =



Gauss-Legendre (G) Quadrature

Same as Gauss-Legendre-Lobatto

But w/o endpoints (not used for prescribed
function values at boundaries)

Weights are

2
W,G:G_:

L =X)Ly ()T
Where L, are the Legendre polynomials,

Gauss points (interior points) are zeroes of Ly,



Interpolation Polynomials

 Basis functions are Legendre-Gauss-
Lobatto-Lagrange interpolation
polynomials:
. —1 (1—x*)L,(x)
" NN+DL,(x) x—x,




2D Affine Mappings

e Inf(x*(r)), re Q_, define:
X“(r)=x"(r),ry = (5, + LY /2, x5, + L, 1,/2)
where x¥, ;and L*; represent local translation and

dilation constants

e Evaluation of elemental integrals for general
curvilinear coordinates is facilitated by these
mappings of physical (x) system into local (r)
system



2D Affine Mappings

Derivatives in elemental integrals can be expressed in
local (r) coordinates w/Jacobian transformation (in

indicial notation): d I 7,
ox, o,
X X

With Jacobian: J =| " 21
_xl,r2 x2,r2_

Jacobian determinant: ‘J ‘ = X KXo T X0 Xy

1 'x2,r2 _’x2,r1

J

And inverse Jacobian: J~! —

_'xl,r2 xl,rl _



The Jacobian is:J =

[ts determinant is: ‘ ]‘ =X, Xy, — Xy, X, =

2D Affine Mappings

Using X (r,,r,) = (%) | + L*, r,/2, X5, 5 + LX, r,/2)

xl,rl

xl,r2

And 1nverse Jacobian is:

]—1

_1
J

x2,r2

_’xl,r2

_x2,r1

xlarl —

1

2

L 0

0 L,

4

LL,




Elemental Integrals

* Using the affine mappings, the integrals can
be evaluated as (e.g.):

(v [ =L S f (e dry dr,
* Numerical integration rules for element €2,
with GL 1s

kangZ P Pn |Jk( gm ’ gn) | gk( ém ’ gn)
for all gk e CO(Q,)



Quadrature Implementation

* Lagrangian bases makes quadrature implementation
convenient

* Letf“(r):=f(x*(r)),re Q.
e In R? (R’ follows readily from tensor product form):
(9o = 2.2 2.1 6.8 )8 €8 ) [ .8 )| pip,

k i=0 j=0
N—1N-1

(F0e =S 33 £, £l ) o,

kK i=1 j=1

where J* (r ) is Jacobian from transformation x*( r )



Polynomial Representation

* Every scalar in P, (€2) 1s represented in the form
Sl =328 EAZ':() fkl] h(ry) h( )

e where h(r)e Py (r) 1s the Lagrange polynomial
satisfying h,( G;) =

* For each sub- domam a natural ordering, £, i, j €
{0,...,N }?is associated w/vector f*

e And, in turn, natural ordering, f"ij, ke {0,....K}?
is associated w/the K(N+1)? + 1 vector f;



Discrete Stokes System
* Inserting SEM basis

S DIt =3V g ZN o foh(ry ) hi(ry)

Into

Rie(Vu,VV) + ziAt(u,V) —(p,Vev)=(f,v)
(Veu,qg)=0

yields #uw'-D ' p*=Bf* , Du"=0

where

v  #= A/Re + B/At = discrete equivalent of Helmholtz operator;
v' A = discrete Laplacian,

v’ B = mass matrix associated with the velocity mesh (diagonal);
v' D = discrete divergence operator



Discrete Stokes System
* A pressure correction step 1s then needed:
Eép=-Du
u'=u"+ At B! D' p + O(AF?)
where E = At D B! D' is the Stokes Schur

complement governing the pressure in the absence
of the viscous term



Discrete Stokes System

e Define unassembled mass matrix to be
block-diagonal matrix B, = diag( B*)

* Where each local mass matrix is expressed
as tensor-product of 1D operators:

" :£L’;f; ]B © B

e Where B*=diag( p, ), i=0,...N




Discrete Stokes System
 Express

(fag)GL — 222]“{(51951) gk(éi’éj)' ‘]k(éi’éj)‘° PP ;

In terms of mass matrices as
V f,8 € PN,K(Q) ($.&)er = 2k (f*) B*g* =f" B, &



Discrete Stokes System

 Similarly, for bilinear form ( Vf, Vg ):

Vige PN,K(Q) (1 =24 (F) A =f,TA; g/
« Here AL = diag( A*) is the unassembled stiffness matrix

and A* is the local stiffness matrix:
Lk . . LF )
A= ;]B ® A +(;U]A ® B
Ll L2

e A"isa 1D stiffness matrix defined in terms of spectral
differentiation matrix D™
A% =§th=0 D'yp Dy, i,je {0,...N}?

*k

Y dr

rzéi



Computing A*
Whereas A™ is full, A* is sparse due to using

diagonal mass matrix B”

Computational stencil of A*is a cross, much like
finite difference stencil

For deformed sub-domains, A* is generally full
with (N+1)¢ non-zero entries

Action of A* upon a vector can be efficiently
computed in O(N!) operations if tensor-product
form 1s retained 1n favor of its explicit formation



Computing f

* Local sub-domain operators (A; and B))

incorporated into global n, X n, system matrices
through “direct stiffness” summation assembly

procedure which maps vectors from their local

representation, f; to global form, f

e Le., let O be global-to-local mapping operator that
transfers basis coefs. from global to local ordering:

fL =0 f



Computing f

e [ocal sub-domain operators (A; and B,)
incorporated into global n, X n, system matrices by
defining index set g;; € {1...., n,} which maps
vectors from their local representation, f, to global
form, f

e Index set has repeated entries for any node (i, j, k)
that 1s physically coincident w/another (i’, j’, k’),
* Le., gy = Gy Iff X5 (rpry) =X (rpr;)

k — vk’ k — .,k



Computing Index Maps

Index map can be represented in matrix form as
prolongation operator Q which maps from set of
global indices to local index set

Q is a K(N+1)?x n, is a Boolean matrix w/a single
“1” 1n each row and zeroes elsewhere
Ifm=k-1)e(N+1)’+je(N+1)+i+1is
position of f*; in f; and g = g, is the corresponding
global index

Then m™ column of Q" is unit vector ¢ , Le., the g™
column of the identity matrix



Computing Index Maps

* Application of Q to a vector implies distribution
whereas application of Q' to a vector implies
summation, or gathering of information

o Ois sometimes referred to as the “direct-stiffness-
summation’” operator



Discrete Stokes System

* A direct consequence of unique mapping property q;; =
qppp U X5 (r,r;) = X% (r;,r;) and use of Lagrangian ba81s 1S
that

V f,.g € Py p(L2) N H!,
(Vi,VQe=0"A Qg

e Define Q7 A, Q as Neumann Laplacian operator - it has a
null-space of dimension unity corresponding to constant
mode

e Define associated Dirichlet operator as M' Q" A, O M
where M is the diagonal mask matrix having ones on the
diagonal at points g, : X, € QU €2, and zeroes
elsewhere



Discrete Stokes System

e With operators Q and M the following problems are
equivalent:

Forf € Py x(£2)

Find u € XV, such that (Vv, Vi), = (v, g, V v e XN,

Find u € R(M) such that v MT QT A, OMu=M Q" B, [, ,
Vve RM)

* Here R() is the range of argument and f, 1s the vector of
nodal values of f( x)

e Direct stiffness-summation operator ensures that solution
will lie in H' while mask M enforces homogeneous
Dirichlet bc: u=0 on 0Q2,



Laplacian and Mass Matrices

* Define discrete Laplacian and mass

matrices as:
A=MQTA, OM
B=MQ"B,OM

* Both treated as invertible and SPD
e But this is not strictly true due to null space

assoclated w/boundaries (u=0 bc on some
boundaries)



Stokes Operators

e Using
N-1N-1

(F0e =S 33 £, £, ) o,

kK i=1 j=1

S o
contribution to  (¢.V-u), = 2(@ —
G

ox
. . . =1 [
from single element in R? is

d
[=1

—1 k
[

]:Z:q"(n,-,n ) f;”—(n ;)

(ni’nj) 0,0

I PME



Stokes Operators

e Contribution from ¢ represented by
Lagrangian interpolants on Gauss points:

q“ (1, 77,-) = qkij
e Derivative of velocity must be interpolated

giving rise to matrix form
K

(¢.V-u)_ = E(Qk)T (leulk + D§u’2‘)

k=1



Stokes Operators

* For affine mappings case, local derivative matrices
are define as

k k
Df = Lirep D} = Liber
2 2

where I';; = 0; h; ( 1;) is the 1D interpolation
matrix mapping from Gauss-Lobatto points to
Gauss points

e and the weighted 1D differentiation matrix Jh

interpolated onto the Gauss points 1s D;; =0, drj




Stokes Problem in Matrix Form

e LetD,=D, .0 M, i=1,....d
with D, ;= diag( D)

* In R?, matrix form of Stokes problem is

(
H -D/ /ul\ fl\

H _DzT ktz:fz

-D -D, 0 AP \ip)




