
Spectral Element Method

Background and Details
A compilation by

Dr. Jacques C. Richard
JC-Richard@CSU.edu

Spectral Element Method

• Like Finite Element Method
• But with Spectral Functions
• Infinitely differentiable global functions of SEM

vs. local character of FEM functions.
• Adaptive mesh
• Polynomials of high and differing degrees
• Non-conforming spectral element method

presented here is as described by Fischer; Patera;
van de Vosse and Minev; Bernadi and Maday, etc.

SEM Discretization

• Polynomial approximation for velocity two
degrees higher than that for pressure

• Avoids spurious pressure modes.

• Like solving eqs. on a staggered grid where u
and p are solved on different grids but coupled
(e.g., via interpolation)

SEM Approach
• Temporal discretization of Navier-Stokes eqs. based on

high-order operator splitting methods
– Splitting problem into convection & diffusion
– Some combination of integration schemes for

convection operator or for time-dependent terms that
may be high order

– With some degree of polynomial for SEM
discretization of diffusion terms giving high-order in
space

• Coupled w/SEM spatial discretization to yield sequence
of symmetric positive definite (SPD) sub-problems to be
solved at each time step.

Current Models
• SEM for unsteady incompressible viscous flow
• Navier-Stokes eqs.

�

!u
!t

+ u •"u = #"p + 1
Re

"2u

�

!•u = 0

Initial and Boundary Conditions

• Ic: u(x,0)=u0(x)
• bc’s: u = uv on ∂Ωv,

!ui • ûn = 0 on ∂Ωo or
– ûn is an outward pointing normal on boundary
– Subscripts v and o denote parts of boundary

w/either “velocity” or “outflow” bc’s
�

!ui • ˆ n = 0

SEM Algorithm

• The convective term is expressed as a material derivative,
which is discretized using a stable mth order backward-
difference scheme (m=2 or 3)

• For m=2,

• where RHS represents a linear symmetric Stokes problem
to be solved implicitly and n-2 is a velocity field that is
computed as the explicit solution to a pure convection
problem over time interval [tn-2,tn].�

˜ u n!2 ! 4 ˜ u n!1 + 3 ˜ u n

2"t
= S(˜ u)

�

˜ u

SEM Algorithm

• Sub-integration of convection term permits
values of "t corresponding to convective
Courant numbers CFL = max Ωc∆t/∆r = 1-5

• Significantly reduces number of
(computationally expensive) Stokes solves

Operator Splitting
• Splitting leads to unsteady Stokes problem to be

solved at each time step in Ω:
H un + ! pn = fn

where H = (- !2/Re + c0 / ∆t) is the Helmholtz
operator,
c0 is an order unity constant
fn incorporates treatment of non-linear terms

�

! •un = 0

SEM Algorithm

• Stokes discretization (w/o n) based on following
variational form: Find (u, p) in X # Y such that

• $ (v,q) % X # Y, I.e., as weights in X # Y.
• Inner products: (l,g)=∫Ω l(x) g(x) d x�

1
Re
(!u,!v)+ 3

2"t
(u,v) # (p,! • v) = (f,v)

�

(! •u,q) = 0

Proper Subspaces
• The proper subspaces for u, v, and p, q are:

X={v : vi % H1
0 (&), i=1,…,d, v = 0 on ∂Ωv}, d=2 if 2D...

Y= L2 (&)

– L2 is the space of square integrable functions on &;
∫Ωv2dV = ∫Ωv2d3r

– H1
0 is the space of functions in L2 that vanish on the

boundary (0) and whose first derivative (1) is also in L2;
∫Ω(∂v/∂r)2dV = ∫Ω(∂v/∂r)2d 3r

• Spatial discretization proceeds by restricting u, v,
and p, q to compatible finite-dimensional velocity
and pressure subspaces: XN ' X and YN ' Y

SEM Algorithm
• Stokes discretization is then written as:

 Find (u, p) in XN # YN such that

• $ (v,q) % XN # YN, I.e., as weights in XN # YN.
• Subscripts (.,.)GL and (.,.)G refer to Gauss-

Lobatto-Legendre (GL) and Gauss-Legendre (G)
quadrature

�

1
Re
(!u,!v)GL + 3

2"t
(u,v)GL # (p,! • v)G = (f,v)GL

�

(! •u,q)G = 0

Sub-Domains

• In SEM, bases for XN and YN are defined by
tessellating domain into K non-overlapping
sub-domains Ω = (K

k=1 Ωk

• Within each sub-domain, functions are
represented in terms of tensor-product
polynomials on a reference sub-domain, e.g.,
&ref :=[)1,1]d.

Mapping Sub-Domain to
“Reference Sub-Domain”

• Each Ωk is image of ref. sub-domain under
mapping: xk (r) % Ωk * r % &ref

• With well-defined inverse:
rk (x) % &ref * x % Ωk

• I.e., each sub-domain is a deformed quadrilateral in
R2 (2D) or deformed parallelepiped in R3 (3D)

• Intersection of closure of any two sub-domains is
void, a vertex, an entire edge (2D), or an entire
face (3D)

Conforming/Non-Conforming
SEM

• For conforming case +kl = Ωk , Ωl for k≠l is
void, a single vertex, or an entire edge.

• For non-conforming case, +kl may be a subset of
either ∂Ωk or ∂Ωl but must coincide with an
entire edge of the elements.

• Function continuity, u % H1
0 (&), enforced by

matching Lagrangian basis functions on sub-
domain interfaces.

• The velocity space is thus conforming, even for
the nonconforming meshes (by 1st bullet)

Handling Pressure
• To avoid spurious pressure modes, Maday, Patera

and Rønquist, and, Bernardi and Maday suggest
different approximation spaces for velocity and
pressure:
XN = X , PN,K(&)

YN = Y , PN-2,K(&)

where

PN,K(&)={v(xk (r))|&k
 %PN(r1) … PN(rd), k=1,..,K }

and PN(r) is space of all polynomials of degree≤N

Space Dimensions

• Dimension of YN is K(N-1)d since continuity
is enforced for functions in YN

• Dimension of XN is dK(N+1)d because
– functions in XN must be continuous across sub-

domain interfaces
– Dirichlet bc’s on ∂Ωv

Function Spaces

• Velocity Space: Basis chosen for PN(r) is set of
Lagrangian interpolants on Gauss-Lobatto-
Legendre (GL) quadrature pts. in ref. domain: -i %
[)1,1], i=0,…,N

• Pressure Space: Basis chosen for PN-2(r) is set of
Lagrangian interpolants on Gauss-Legendre (G)
quadrature pts. in ref. domain: .i %])1,1[,
i=1,…,N-1

• Basis for velocity is continuous across sub-domain
interfaces but basis for pressure is not

SEM Algorithm Subspaces
• Could also write XN:=[ZNH1

0(&k)]d and YN:=ZN-2
where ZN :={ v % L2(&) |v& % PN(&k) }
– I.e., v belongs to space of functions in L2

– v|&
k belongs to space of polynomials of degree ≤ N in kth element’s size sub-

space &k

– And these both define the space ZN

• PN (&k) is a space of functions for kth element &k

whose image is a tensor-product polynomial of
degree ≤N in a ref. solution domain &ref :=[)1,1]d.

SEM Algorithm Quadrature
• Subscripts (.,.)GL and (.,.)G referred to Gauss-

Lobatto-Legendre (GL) and Gauss-Legendre (G)
quadrature which are:

• ∫1-1f(x)dx= w1 f (-1)+wN f (1)+∑N
iwi f (xi)

Gauss-Lobatto-Legendre (GL)
Quadrature

• ∫1-1f(x)dx=w1 f (-1)+wN f (1)+∑n
iwi f (xi) where

• Ln are the Legendre polynomials,
• Gauss-Lobatto points are zeroes of L’N or (1-x2)

L’N & at endpoints (-1,1)
�

wi
GL = 2N

(1! xi
2)LN!1

'' (xi)LN
' (xi)

= 2
N(N !1)[LN!1(xi)]

2

�

w1,N
GL = 2

N(N !1)

Gauss-Lobatto-Legendre (GL)
Quadrature

• w/error

• for - % (-1,1)
• The weights may also be written as

�

wi
GL = !i = 2

N(N +1)
1

[LN (xi)]
2

�

E = N(N !1)322N!1[(N ! 2)!]4

(2N !1)[(2N ! 2)!]3
f (2N!2)(")

Gauss-Legendre (G) Quadrature

• Same as Gauss-Legendre-Lobatto

• But w/o endpoints (not used for prescribed
function values at boundaries)

• Weights are

• Where LN are the Legendre polynomials,
• Gauss points (interior points) are zeroes of LN+1

�

wi
G = ! i = 2

(1" xi
2)[LN +1(xi)]

2

Interpolation Polynomials

• Basis functions are Legendre-Gauss-
Lobatto-Lagrange interpolation
polynomials:

�

hi = !1
N(N +1)LN (xi)

(1! x 2)LN
' (x)

x ! xi

2D Affine Mappings
• In f (xk (r)), r % &ref, define:

xk (r) = xk (r1,r2) = (xk
0,1 + Lk

1 r1/2, xk
0,2 + Lk

2 r2/2)
 where xk

0,i and Lk
j represent local translation and

dilation constants
• Evaluation of elemental integrals for general

curvilinear coordinates is facilitated by these
mappings of physical (x) system into local (r)
system

2D Affine Mappings
• Derivatives in elemental integrals can be expressed in

local (r) coordinates w/Jacobian transformation (in
indicial notation):

• With Jacobian:

• Jacobian determinant:

• And inverse Jacobian:

�

!
!xi

= Ji"
#1 !
!r"

�

J =
x1,r1 x2,r1
x1,r2 x2,r2

!

"

$

%
&

�

J = x1,r1 x2,r2 ! x2,r1 x1,r2

�

J!1 = 1
J

x2,r2 !x2,r1
!x1,r2 x1,r1

"

$

%

&
'

2D Affine Mappings
• Using xk (r1,r2) = (xk

0,1 + Lk
1 r1/2, xk

0,2 + Lk
2 r2/2)

• The Jacobian is:

• Its determinant is:

• And inverse Jacobian is:�

J =
x1,r1 x2,r1
x1,r2 x2,r2

!

"

$

%
& =
1
2
L1
k 0
0 L2

k

!

"

$

%
&

�

J = x1,r1 x2,r2 ! x2,r1 x1,r2 = L1
kL2

k

4

�

J!1 = 1
J

x2,r2 !x2,r1
!x1,r2 x1,r1

"

$

%

&
' =

2
L1
k 0

0 2
L2
k

"

$
$
$
$

%

&

'
'
'
'

Elemental Integrals

• Using the affine mappings, the integrals can
be evaluated as (e.g.):
(vi, fi)k = ∫1-1 ∫1-1 vk

i fk
i |J|k dr1 dr2

• Numerical integration rules for element Ωk
with GL is

 ∫Ωk g dV = /m /n |Jk(-m , -n) | gk (-m , -n)
for all gk % C0(&k)

Quadrature Implementation
• Lagrangian bases makes quadrature implementation

convenient
• Let f k (r) := f (xk (r)), r % &ref

• In R2 (R3 follows readily from tensor product form):

where Jk (r) is Jacobian from transformation xk (r)�

(f ,g)GL = f k (! i,! j)
j= 0

N

"
i= 0

N

"
k
" # gk (! i,! j) # J

k (! i,! j) # i j

�

(f ,g)G = f k (!i,! j)
j=1

N"1

#
i=1

N"1

#
k
$ gk (!i,! j) $ J

k (!i,! j) $% i% j

Polynomial Representation
• Every scalar in PN,K(&) is represented in the form

f(x)|&k
 = ∑N

i=0 ∑N
j=0 fk

ij hi(r1) hj(r2)
• where hi(r) % PN (r) is the Lagrange polynomial

satisfying hi(-j) = 0ij

• For each sub-domain, a natural ordering, fk
ij, i, j %

{ 0,…,N }2 is associated w/vector fk

• And, in turn, natural ordering, fk
ij, k % { 0,…,K }2

is associated w/the K(N+1)2 + 1 vector fL

Discrete Stokes System
• Inserting SEM basis

f(xk (r))|&k
 = ∑N

i=0 ∑N
j=0 fkij hi(r1) hj(r2)

into

yields H un - DT pn = B fn , D un = 0
where
H = A/Re + B/∆t = discrete equivalent of Helmholtz operator;
A = discrete Laplacian,
B = mass matrix associated with the velocity mesh (diagonal);
D = discrete divergence operator

�

1
Re
(!u,!v)+ 3

2"t
(u,v) # (p,! • v) = (f,v)

�

(! •u,q) = 0

Discrete Stokes System
• A pressure correction step is then needed:

E 0p = - D u’

 un = un + ∆t B-1 DT 0p + O(∆t2)
where E = ∆t D B-1 DT is the Stokes Schur
complement governing the pressure in the absence
of the viscous term

Discrete Stokes System

• Define unassembled mass matrix to be
block-diagonal matrix BL 1 diag(Bk)

• Where each local mass matrix is expressed
as tensor-product of 1D operators:

• Where B*=diag(/i), i=0,…N

�

Bk = L1
kL2

k

4
!

"

$

%
& B* ' B*

Discrete Stokes System
• Express

in terms of mass matrices as
$ f,g % PN,K(&) (f,g)GL = ∑k (fk)T Bk gk = fL

T BL gL
�

(f ,g)GL = f k (! i,! j)
j= 0

N

"
i= 0

N

"
k
" # gk (! i,! j) # J

k (! i,! j) # i j

Discrete Stokes System
• Similarly, for bilinear form (!f, !g):

$ f,g % PN,K(&) (f,g)GL = ∑k (fk)T Ak gk = fL
T AL gL

• Here AL 1 diag(Ak) is the unassembled stiffness matrix
and Ak is the local stiffness matrix:

• A* is a 1D stiffness matrix defined in terms of spectral
differentiation matrix D*:
A*

ij = ∑N
l=0 D*

li /l D*
lj , i, j % { 0,…,N }2�

Ak = L2
k

L1
k

!

"

$

%
& B* ' A* + L1

k

L2
k

!

"

$

%
& A* ' B*

�

Dij
* =

dh j

dr r=! i

Computing Ak

• Whereas A* is full, Ak is sparse due to using
diagonal mass matrix B*

• Computational stencil of Ak is a cross, much like
finite difference stencil

• For deformed sub-domains, Ak is generally full
with (N+1)d non-zero entries

• Action of Ak upon a vector can be efficiently
computed in O(Nd+1) operations if tensor-product
form is retained in favor of its explicit formation

Computing f
• Local sub-domain operators (AL and BL)

incorporated into global nv # nv system matrices
through “direct stiffness” summation assembly
procedure which maps vectors from their local
representation, fL to global form, f

• I.e., let Q be global-to-local mapping operator that
transfers basis coefs. from global to local ordering:
fL =Q f

Computing f
• Local sub-domain operators (AL and BL)

incorporated into global nv # nv system matrices by
defining index set qijk % {1,…, nv} which maps
vectors from their local representation, fL to global
form, f

• Index set has repeated entries for any node (i, j, k)
that is physically coincident w/another (i’, j’, k’),

• I.e., qijk = qi’j’k’ iff xk (ri,rj) = xk’ (ri’,rj’)
or xk

ij = xk’
i’j’

 * uk
ij = uk’

i’j’

Computing Index Maps
• Index map can be represented in matrix form as

prolongation operator Q which maps from set of
global indices to local index set

• Q is a K(N+1)d # nv is a Boolean matrix w/a single
“1” in each row and zeroes elsewhere

• If m=(k - 1) • (N + 1)2 + j • (N + 1) + i + 1 is
position of fk

ij in fL and q = qijk is the corresponding
global index

• Then mth column of QT is unit vector êq, I.e., the qth

column of the identity matrix

Computing Index Maps
• Application of Q to a vector implies distribution

whereas application of QT to a vector implies
summation, or gathering of information

• QT is sometimes referred to as the “direct-stiffness-
summation” operator

Discrete Stokes System
• A direct consequence of unique mapping property qijk =

qi’j’k’ iff xk (ri,rj) = xk’ (ri’,rj’) and use of Lagrangian basis is
that

$ f,g % PN,K(&) , H1,
(!f, !g)GL = fT QT AL Q g

• Define QT AL Q as Neumann Laplacian operator - it has a
null-space of dimension unity corresponding to constant
mode

• Define associated Dirichlet operator as MT QT AL Q M
where M is the diagonal mask matrix having ones on the
diagonal at points qijk : xk

ij % & (2&0 and zeroes
elsewhere

Discrete Stokes System
• With operators Q and M the following problems are

equivalent:
For f % PN,K(&)

Find u % XN
0 such that (!v, !u)GL = (v, f)GL , $ v % XN

0

Find u % R(M) such that vT MT QT AL Q M u = M QT BL fL ,
$ v % R(M)

• Here R() is the range of argument and fL is the vector of
nodal values of f (x)

• Direct stiffness-summation operator ensures that solution
will lie in H1 while mask M enforces homogeneous
Dirichlet bc: u=0 on 2&v

Laplacian and Mass Matrices

• Define discrete Laplacian and mass
matrices as:

A = M QT AL Q M
B = M QT BL Q M

• Both treated as invertible and SPD
• But this is not strictly true due to null space

associated w/boundaries (u=0 bc on some
boundaries)

Stokes Operators

• Using

contribution to
from single element in R2 is

�

(f ,g)G = f k (!i,! j)
j=1

N"1

#
i=1

N"1

#
k
$ gk (!i,! j) $ J

k (!i,! j) $% i% j

�

q,! "u()G = q,#ul
#xl

$

%
&

'

(
)
Gl=1

d

*

�

qk !i,! j()
j=1

N"1

#
i=1

N"1

#
l=1

d

$ %ul
k

%xl
!i,! j() $ Jk !i,! j() $& i& j

Stokes Operators

• Contribution from q represented by
Lagrangian interpolants on Gauss points:
qk (.i, .j) = qk

ij

• Derivative of velocity must be interpolated
giving rise to matrix form

�

q,! "u()G = qk()T D1
ku1

k + D2
ku2

k()
k=1

K

#

Stokes Operators
• For affine mappings case, local derivative matrices

are define as

where I*
ij = 3i hj (.i) is the 1D interpolation

matrix mapping from Gauss-Lobatto points to
Gauss points

• and the weighted 1D differentiation matrix
interpolated onto the Gauss points is

�

D1
k = L2

k

2
!

"

$

%
& I* ' D*

�

D2
k = L1

k

2
!

"

$

%
& D* ' I*

�

Dij
* = ! i

dh j

dr r=" i

Stokes Problem in Matrix Form
• Let Di 1 DL,i Q M, i=1,…, d

with DL,i 1 diag(Dk
i)

• In R2, matrix form of Stokes problem is

�

H !D1
T

H !D2
T

!D1 !D2 0

"

$
$
$

%

&

'
'
'

u1
u2
p

(

)

*
*
*

+

,

-
-
-

=
f
1

f
2

f
p

(

)

*
*
*

+

,

-
-
-

