
Spectral Element Method

Background and Details
A compilation by

Dr. Jacques C. Richard
JC-Richard@CSU.edu



Spectral Element Method

• Like Finite Element Method
• But with Spectral Functions
• Infinitely differentiable global functions of SEM

vs. local character of FEM functions.
• Adaptive mesh
• Polynomials of high and differing degrees
• Non-conforming spectral element method

presented here is as described by Fischer; Patera;
van de Vosse and Minev; Bernadi and Maday, etc.



SEM Discretization

• Polynomial approximation for velocity two
degrees higher than that for pressure

• Avoids spurious pressure modes.

• Like solving eqs. on a staggered grid where u
and p are solved on different grids but coupled
(e.g., via interpolation)



SEM Approach
• Temporal discretization of Navier-Stokes eqs. based on

high-order operator splitting methods
– Splitting problem into convection & diffusion
– Some combination of integration schemes for

convection operator or for time-dependent terms that
may be high order

– With some degree of polynomial for SEM
discretization of diffusion terms giving high-order in
space

• Coupled w/SEM spatial discretization to yield sequence
of symmetric positive definite (SPD) sub-problems to be
solved at each time step.



Current Models
• SEM for unsteady incompressible viscous flow
• Navier-Stokes eqs.
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Initial and Boundary Conditions

• Ic: u(x,0)=u0(x)
• bc’s: u = uv on ∂Ωv,

!ui • ûn = 0 on ∂Ωo or
– ûn is an outward pointing normal on boundary
– Subscripts v and o denote parts of boundary

w/either “velocity” or “outflow” bc’s
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SEM Algorithm

• The convective term is expressed as a material derivative,
which is discretized using a stable mth order backward-
difference scheme (m=2 or 3)

•  For m=2,

• where RHS represents a linear symmetric Stokes problem
to be solved implicitly and     n-2 is a velocity field that is
computed as the explicit solution to a pure convection
problem over time interval [tn-2,tn].� 
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SEM Algorithm

• Sub-integration of convection term permits
values of "t corresponding to convective
Courant numbers CFL = max Ωc∆t/∆r = 1-5

• Significantly reduces number of
(computationally expensive) Stokes solves



Operator Splitting
• Splitting leads to unsteady Stokes problem to be

solved at each time step in Ω:
H  un + ! pn = fn

where H = (- !2/Re + c0 / ∆t ) is the Helmholtz
operator,
c0 is an order unity constant
fn incorporates treatment of non-linear terms
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SEM Algorithm

• Stokes discretization (w/o n) based on following
variational form: Find (u, p)  in X # Y such that

• $ (v,q) % X # Y, I.e., as weights in X # Y.
• Inner products: (l,g)=∫Ω l(x) g(x) d x� 
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Proper Subspaces
• The proper subspaces for u, v, and p, q are:

X={v : vi % H1
0 (&), i=1,…,d,  v = 0 on ∂Ωv}, d=2 if 2D...

Y= L2 (&)

– L2 is the space of square integrable functions on &;
∫Ωv2dV = ∫Ωv2d3r

– H1
0 is the space of functions in L2 that vanish on the

boundary (0) and whose first derivative (1) is also in L2;
∫Ω(∂v/∂r)2dV = ∫Ω(∂v/∂r)2d 3r

• Spatial discretization proceeds by restricting u, v,
and p, q to compatible finite-dimensional velocity
and pressure subspaces: XN ' X and YN ' Y



SEM Algorithm
• Stokes discretization is then written as:

 Find (u, p)  in XN # YN such that

• $ (v,q) % XN # YN, I.e., as weights in XN # YN.
• Subscripts (.,.)GL and (.,.)G refer to Gauss-

Lobatto-Legendre (GL) and Gauss-Legendre (G)
quadrature
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Sub-Domains

• In SEM, bases for XN and YN are defined by
tessellating domain into K non-overlapping
sub-domains Ω = (K

k=1 Ωk

• Within each sub-domain, functions are
represented in terms of tensor-product
polynomials on a reference sub-domain, e.g.,
&ref :=[)1,1]d.



Mapping Sub-Domain to
“Reference Sub-Domain”

• Each Ωk is image of ref. sub-domain under
mapping: xk ( r ) % Ωk * r % &ref

• With well-defined inverse:
rk ( x ) % &ref * x % Ωk

• I.e., each sub-domain is a deformed quadrilateral in
R2 (2D) or deformed parallelepiped in R3 (3D)

• Intersection of closure of any two sub-domains is
void, a vertex, an entire edge (2D), or an entire
face (3D)



Conforming/Non-Conforming
SEM

• For conforming case  +kl = Ωk , Ωl for k≠l  is
void, a single vertex, or an entire edge.

• For non-conforming case, +kl may be a subset of
either ∂Ωk  or ∂Ωl but must coincide with an
entire edge of the elements.

• Function continuity, u % H1
0 (&), enforced by

matching Lagrangian basis functions on sub-
domain interfaces.

• The velocity space is thus conforming, even for
the nonconforming meshes (by 1st bullet)



Handling Pressure
• To avoid spurious pressure modes, Maday, Patera

and Rønquist, and, Bernardi and Maday suggest
different approximation spaces for velocity and
pressure:
XN = X , PN,K(&)

YN = Y , PN-2,K(&)

where

PN,K(&)={v(xk ( r ))|&k
 %PN(r1) … PN(rd), k=1,..,K }

and PN(r) is space of all polynomials of degree≤N



Space Dimensions

• Dimension of YN is K(N-1)d since continuity
is enforced for functions in YN

• Dimension of XN is dK(N+1)d because
–  functions in XN must be continuous across sub-

domain interfaces
– Dirichlet bc’s on ∂Ωv



Function Spaces

• Velocity Space: Basis chosen for PN(r) is set of
Lagrangian interpolants on Gauss-Lobatto-
Legendre (GL) quadrature pts. in ref. domain: -i %
[)1,1], i=0,…,N

• Pressure Space: Basis chosen for PN-2(r) is set of
Lagrangian interpolants on Gauss-Legendre (G)
quadrature pts. in ref. domain: .i % ])1,1[,
i=1,…,N-1

• Basis for velocity is continuous across sub-domain
interfaces but basis for pressure is not



SEM Algorithm Subspaces
• Could also write XN:=[ZNH1

0(&k)]d and YN:=ZN-2
where ZN :={ v % L2(&) |v& % PN(&k) }
– I.e., v belongs to space of functions in L2

–  v|&
k belongs to space of polynomials of degree ≤ N in kth element’s size sub-

space &k

– And these both define the space ZN

• PN (&k) is a space of functions for kth element &k

whose image is a tensor-product polynomial of
degree ≤N in a ref. solution domain &ref :=[)1,1]d. 



SEM Algorithm Quadrature
• Subscripts (.,.)GL and (.,.)G referred to Gauss-

Lobatto-Legendre (GL) and Gauss-Legendre (G)
quadrature which are:

• ∫1-1f(x)dx= w1 f (-1)+wN f (1)+∑N
iwi f (xi)



Gauss-Lobatto-Legendre (GL)
Quadrature

• ∫1-1f(x)dx=w1 f (-1)+wN f (1)+∑n
iwi f (xi) where

• Ln are the Legendre polynomials,
• Gauss-Lobatto points are zeroes of L’N or (1-x2)

L’N & at endpoints (-1,1)
� 
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Gauss-Lobatto-Legendre (GL)
Quadrature

• w/error

• for - % (-1,1)
• The weights may also be written as
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Gauss-Legendre (G) Quadrature

• Same as Gauss-Legendre-Lobatto

• But w/o endpoints (not used for prescribed
function values at boundaries)

• Weights are

• Where LN are the Legendre polynomials,
• Gauss points (interior points) are zeroes of LN+1
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Interpolation Polynomials

• Basis functions are Legendre-Gauss-
Lobatto-Lagrange interpolation
polynomials:
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2D Affine Mappings
• In f (xk ( r )), r % &ref, define:

xk ( r ) = xk (r1,r2) = (xk
0,1 + Lk

1 r1/2, xk
0,2 + Lk

2 r2/2)
 where xk

0,i and Lk
j represent local translation and

dilation constants
• Evaluation of elemental integrals for general

curvilinear coordinates is facilitated by these
mappings of physical (x) system into local (r)
system



2D Affine Mappings
• Derivatives in elemental integrals can be expressed in

local (r) coordinates w/Jacobian transformation (in
indicial notation):

• With Jacobian:

• Jacobian determinant:

• And inverse Jacobian:
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2D Affine Mappings
• Using xk (r1,r2) = (xk

0,1 + Lk
1 r1/2, xk

0,2 + Lk
2 r2/2)

• The Jacobian is:

• Its determinant is:

• And inverse Jacobian is:� 
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Elemental Integrals

• Using the affine mappings, the integrals can
be evaluated as (e.g.):
( vi, fi )k = ∫1-1  ∫1-1 vk

i fk
i |J|k dr1 dr2

• Numerical integration rules for element Ωk
with GL is

 ∫Ωk g dV = /m /n |Jk( -m , -n ) | gk ( -m , -n )
for all gk % C0(&k)



Quadrature Implementation
• Lagrangian bases makes quadrature implementation

convenient
• Let f k ( r ) := f (xk ( r )), r % &ref

• In R2 (R3 follows readily from tensor product form):

where Jk ( r ) is Jacobian from transformation xk ( r )� 
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Polynomial Representation
• Every scalar in PN,K(&) is represented in the form

f(x)|&k
  = ∑N

i=0 ∑N
j=0  fk

ij hi( r1 ) hj( r2 )
• where hi( r ) % PN (r) is the Lagrange polynomial

satisfying hi( -j ) = 0ij

• For each sub-domain, a natural ordering, fk
ij, i, j %

{ 0,…,N }2 is associated w/vector fk

• And, in turn, natural ordering, fk
ij, k % { 0,…,K }2

is associated w/the K(N+1)2 + 1 vector fL



Discrete Stokes System
• Inserting SEM basis

f(xk ( r ))|&k
  = ∑N

i=0 ∑N
j=0  fkij hi( r1 ) hj( r2 )

into

yields H  un - DT pn = B fn , D un = 0
where
H = A/Re + B/∆t = discrete equivalent of Helmholtz operator;
A = discrete Laplacian,
B = mass matrix associated with the velocity mesh (diagonal);
D = discrete divergence operator
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Discrete Stokes System
• A pressure correction step is then needed:

E 0p = - D u’

 un = un + ∆t B-1 DT 0p + O(∆t2 )
where E = ∆t D B-1 DT  is the Stokes Schur
complement governing the pressure in the absence
of the viscous term



Discrete Stokes System

• Define unassembled mass matrix to be
block-diagonal matrix BL 1 diag( Bk )

• Where each local mass matrix is expressed
as tensor-product of 1D operators:

• Where B*=diag( /i ), i=0,…N
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Discrete Stokes System
• Express

in terms of mass matrices as
$ f,g % PN,K(&) (f,g)GL = ∑k ( fk )T Bk gk = fL

T BL gL
� 

( f ,g)GL = f k (! i,! j )
j= 0

N

"
i= 0

N

"
k
" # gk (! i,! j ) # J

k (! i,! j ) # $i$ j



Discrete Stokes System
• Similarly, for bilinear form ( !f, !g ):

$ f,g % PN,K(&) (f,g)GL = ∑k ( fk )T Ak gk = fL
T AL gL

• Here AL 1 diag( Ak ) is the unassembled stiffness matrix
and Ak is the local stiffness matrix:

• A* is a 1D stiffness matrix defined in terms of spectral
differentiation matrix D*:
A*

ij = ∑N
l=0 D*

li /l D*
lj ,  i, j % { 0,…,N }2� 
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Computing  Ak

• Whereas  A* is full, Ak is sparse due to using
diagonal mass matrix B*

• Computational stencil of Ak is a cross, much like
finite difference stencil

• For deformed sub-domains, Ak is generally full
with (N+1)d  non-zero entries

• Action of Ak upon a vector can be efficiently
computed in O(Nd+1) operations if tensor-product
form is retained in favor of its explicit formation



Computing f
• Local sub-domain operators (AL and BL)

incorporated into global nv # nv system matrices
through “direct stiffness” summation assembly
procedure which maps vectors from their local
representation, fL to global form, f

• I.e., let Q be global-to-local mapping operator that
transfers basis coefs. from global to local ordering:
fL =Q f



Computing f
• Local sub-domain operators (AL and BL)

incorporated into global nv # nv system matrices by
defining index set qijk % {1,…, nv} which maps
vectors from their local representation, fL to global
form, f

• Index set has repeated entries for any node (i, j, k)
that is physically coincident w/another (i’, j’, k’),

• I.e., qijk =  qi’j’k’ iff  xk (ri,rj) = xk’ (ri’,rj’)
or  xk

ij = xk’
i’j’

 * uk
ij = uk’

i’j’



Computing Index Maps
• Index map can be represented in matrix form as

prolongation operator Q which maps from set of
global indices to local index set

• Q is a K(N+1)d # nv is a Boolean matrix w/a single
“1” in each row and zeroes elsewhere

• If m=(k - 1) • (N + 1)2 + j • (N + 1) + i + 1 is
position of fk

ij in fL and q = qijk is the corresponding
global index

• Then mth column of QT is unit vector êq, I.e., the qth

column of the identity matrix



Computing Index Maps
• Application of Q to a vector implies distribution

whereas application of QT to a vector implies
summation, or gathering of information

• QT is sometimes referred to as the “direct-stiffness-
summation” operator



Discrete Stokes System
• A direct consequence of unique mapping property qijk =

qi’j’k’ iff  xk (ri,rj) = xk’ (ri’,rj’) and use of Lagrangian basis is
that

$ f,g % PN,K(&) , H1,
(!f, !g)GL = fT QT AL Q g

• Define QT AL Q as Neumann Laplacian operator - it has a
null-space of dimension unity corresponding to constant
mode

• Define associated Dirichlet operator as MT QT AL Q M
where M is the diagonal mask matrix having ones on the
diagonal at points qijk : xk

ij % & ( 2&0 and zeroes
elsewhere



Discrete Stokes System
• With operators Q and M the following problems are

equivalent:
For f  % PN,K(&)

Find u % XN
0 such that (!v, !u)GL = (v, f)GL , $ v % XN

0

Find u % R(M) such that vT MT QT AL Q M u = M QT BL fL ,
$ v % R(M)

• Here R() is the range of argument and fL is the vector of
nodal values of f ( x )

• Direct stiffness-summation operator ensures that solution
will lie in H1 while mask M enforces homogeneous
Dirichlet bc: u=0 on 2&v



Laplacian and Mass Matrices

• Define discrete Laplacian and mass
matrices as:

A = M QT AL Q M
B = M QT BL Q M

• Both treated as invertible and SPD
• But this is not strictly true due to null space

associated w/boundaries (u=0 bc on some
boundaries)



Stokes Operators

• Using

contribution to
from single element in R2 is
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Stokes Operators

• Contribution from q represented by
Lagrangian interpolants on Gauss points:
qk (.i, .j) = qk

ij

• Derivative of velocity must be interpolated
giving rise to matrix form
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Stokes Operators
• For affine mappings case, local derivative matrices

are define as

where I*
ij = 3i hj ( .i ) is the 1D interpolation

matrix mapping from Gauss-Lobatto points to
Gauss points

• and the weighted 1D differentiation matrix
interpolated onto the Gauss points is
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Stokes Problem in Matrix Form
• Let Di 1 DL,i Q M, i=1,…, d

with DL,i 1 diag( Dk
i )

• In R2, matrix form of Stokes problem is
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